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For the purpose of comparison, we included in our analysis five colorectal cancer (CRC) mucosa biopsy data sets
we had previously analyzed, Table S1.

Table S1: Colorectal cancer biopsy samples used in this study. n: number of samples used, 16S: variable regions covered.

BioProject SRA n 16S  region

PRJEB6070 ERP0O05534 96 V4 Germany
PRINA298957 SRP064975 98 V3-V4 China, Shanghai
PRJINA325650 SRP076561 50 V3-V4 Malaysia
PRJNA404030 SRP117763 29 V3-V4 New Zealand
PRJNA445346 SRP137015 211 V3-V5 U.S.A.

total 484

The following large scale 16S microbiome studies, in addition to the studies listed in main manuscript Table 1,
were used in the co-exclusion analysis of the gastric cancer species, Table S2.

Table S2: Studies used for co-exclusion analysis. 16S: variable regions sequenced.

SRA 16S  samples publication
SRP062005 V4 stool [11
SRP076743 V4  stool [2]
ERP009494 V3-V4 stool [3]
SRP040765 V4 lower gut biopsies and stool [4]
SRP104731 V4  stool [5]
ERP006339 V4 stool [6]
SRP070848 V4 sputum [7]
SRP060025 V4-V5 sputum [8]
SRP043334 V1-V2 sputum [9]
SRP087648 V4 stool [10]
SRP064975 V3-V4 lower gut biopsies [11]
ERP012803 V4  stool [12]
SRP063707 V1-V3 skin [13]
SRP097785 V4 stool [14]
SRP068187 V4 serum [15]
SRP068473 V4 stool [16]
SRP076281 V4  stool [17]
SRP077299 V4 sputum [18]
ERP013984 V4 eye and skin [19]
SRP057700 V1-V2 stool [20]
SRP090628 V4 stool [21]

microbial community types

Using Dirichlet Multinomial Mixtures on the combined relative abundances of the nine datasets (n=1,544) listed
in main manuscript Table 1, we obtain an optimal goodness of fit at k=5 communities according to the Laplace
and AIC evaluations, figure S1. The breakdown of samples from the various datasets along the community types
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is given in Table S3.

measure © Laplace © AIC @ BIC

normalized goodness of fit

1 2 3 4 5 6 7 8
components
Figure S1: Goodness of fit of the DMM models at different k.

Table S3: Distribution of community types across studies. The five community types are in columns.

study dmm1 dmm2 dmm3 dmm4 dmm5
ERP023334 10 30 81
ERP023753 16 5 13
ERP024440 1 13 18
SRP070925 2 117
SRP128749 635 34
SRP154244 83 179 39
SRP165213 23 9
SRP172818 155 17 1
SRP200169 42 21
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Figure S2: Interaction network between species relevant for community types. The top 100 species relevant for distinction between the five
community types are displayed.
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The first two community types are dominated by a few species mostly without interaction. The majority of
healthy donor samples was located in community type one, together with certain tumor samples.

Of note, community types three and five received contributions from a single study each, Table S3. Hence,
although we find multinomial mixtures and inverse covariance networks were in good agreement for overall
gastric microbiota composition, we observed potentially only a subset of regionally or otherwise determined
gastric microbiota. Among the top 100 differentiating species we found 62 distinct genera, further highlighting
the diversity. Table S4 lists the 18 genera with more than one species.
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Figure S3: Helicobacter pylori proportion, DMMs.

Table S4: Gastric mucosa genera. Only genera with more than one species are listed.

genus species

Prevotella 10
Streptococcus
Acinetobacter
Campylobacter
Porphyromonas
Arthrobacter
Fusobacterium
Leuconostoc
Methylobacterium
Sphingomonas
Veillonella
Actinomyces
Alloprevotella
Bacillus
Brevundimonas
Clostridium
Haemophilus
Lactococcus
Neisseria

NNNNMNNNNMNWOWWWWWWDSDMDMO

Further indication that the DMMs are distinct in nature can be found in the projection of alpha diversity, using
the phylogenetic diversity (whole tree), figure S4. The Helicobacter pylori dominated community type three has
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the lowest diversity.
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Figure S4: Alpha diversity of community types. Phylogenetic diversity (whole tree).

anatomic location

Data set SRP154244 presents samples from different gastric locations in patients with gastritis, intestinal metapla-
sia and gastric cancer. We investigate if microbial signatures differ per anatomic location by training an RF model
on two thirds of the samples and evaluating the model on the remaining third. Table S5 suggests the antral is
well differentiated from the antrum and body, but the latter two are not differentiated. Thus at first sight, gastric
location could at least in part explain differences in community types.

Table S5: RF classification of sampling location. Predictions are in columns. Multiclass AUC:0.788

location antral antrum body

antral 72 3 0
antrum 6 11 0
body 1 6 1

To shine further light on this matter, we group corpus and antrum samples together and retrain an RF model
on the whole of the SRP154244 dataset, retrieve differentiating species and build a SPIEC-EASI network, figure
S5. Although we find significant separation between the two locations, especially when considering the negative
correlations (in red), the separation is not as strict as the separation between community types. So it does not
seem we can explain the distribution of datasets over the community typrs by difference in anatomic location
alone. Of note, we find three bacteria encountered in colorectal cancer, Fusobacterium nucleatum, Parvimonas
micra, Peptostreptococcus stomatis in interaction and associated with the corpus/antrum. Helicobacter pylori is
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more abundant in the antral and not in interaction with any other species.

Figure S5: Interaction network between species relevant for gastric location. The top 100 species relevant for distinction between the two
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gastric locations are displayed. Opportunistic pathogens are labelled.

disease progress

Figure S6 provides a multidimensional scaling plot of the combined disease progress data sets SRP200169 (healthy
subjects) and SRP070925. The corresponding Shannon species diversity distribution is geven in Figure S7. Shan-
non species diversity was also computed for disease progress data set ERP023334, Figure S8. Gastritis is char-
acterized by dysbiosis as compared to healthy tissue, with a trend to reach normal diversity along the disease
progress.
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Figure S6: Multi-dimensional scaling of the disease progress data set. Unweighted UniFrac of ASVs is used as the distance metric.
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Figure S7: Shannon species diversity and disease progress, (SRP200169 + SRP070925). Helicobacter pylori positive (Hp+) and negative (Hp-)
samples are distinguished.
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Figure S8: Shannon species diversity and disease progress (ERP023334). Helicobacter pylori positive (Hp+) and negative (Hp-) samples are
distinguished.

We performed supervised learning of disease progress status with random forests on two thirds of the com-
bined data set, with evaluation on the remaining third. Relative abundances summarized at the species level were
used as the analysis substrate. Table S6 provides the classification results.
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Table S6: Classification results on the disease stage evaluation subset, data set SRP070925. Predictions are in columns. Multiclass AUC:0.936.

stage healthy gastritis  meta- early adv.
plasia cancer cancer

healthy 22

gastritis 10

metaplasia 4 2 3

early 7 1

cancer

advanced 5 7

cancer

disease location

Using unweighted UniFrac distance on ASVs (amplicon sequence variants) we obtain better MDS separation of
normal/peripherical/tumor samples than reported in [22], using the same dataset, whether without (not shown)
or with addition of samples from healthy donors, figure S9.
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Figure S9: Multi-dimensional scaling of the disease status dataset SRP128749. Unweighted UniFrac of ASVs is used as the distance metric.

We performed two supervised learning experiments on the combined data set, one with a two-thirds training,
one-third evaluation setup and a second using one additional data set SRP172818 (n=173) also containing triplets
as the cross-validation set. All three data sets are from Chinese cohorts and have been analysed using the 16S
variable regions V3-V4 combined on the lllumina MiSeq. Table S7 provides the classification results on the com-
bined SRP128749 and SRP200169 data set. Table S8 provides the classification results on the cross-validation
data set SRP172818.

Table S7: Combined SRP128749 and SRP200169 evaluation results. Predictions are in columns. Multiclass AUC:0.842

status healthy normal peripherical tumor
healthy 22 2 4
normal 1 37 20 11
peripherical 3 10 35 20
tumor 11 22 47
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Table S8: SRP172818 cross-validation results. Predictions are in columns. Multiclass AUC:0.906

status healthy normal peripherical tumor
healthy

normal 45 8 4
peripherical 7 41 9
tumor 4 7 48

relevant species in GC

We dispose of four datasets with the metadata required for the association of species with tumor status, whether
from a disease progress or tumor/normal status standpoint. We choose to process datasets individually because
of possible regional differences and retrieve the top 50 differentiating species from the random forest models,
which we train on the datasets as a whole, so as to maximize performance. We provide sequence counts of
these top 50 species to Spiec Easi for ecological network generation. We retain only connected nodes for display.
Figure 2 in the main manuscript provides the result for the two tumor/peripherical/normal datasets SRP128749
and SRP172818 alongside for comparison. Figure S10 below provides the same for the disease progress data set
SRP070925, Fig. S11 for the disease progress data set ERP023334.
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Figure S10: Interaction network between species relevant for disease progress (SRP070925). The top 50 species relevant for distinction
between healthy the three disease stages are displayed. Only species with interactions are shown. Co-exclusion interactions are displayed in
red.

8/17



Revised manuscript

Prv. salivae Ac. odontolyticus

. . Rt. dffarae
Prv. melanmoge@{:@lp‘,ﬂr nguinis
N. bacilljformi K. palustris
Cm. S
Rs mospecies M. @eus
Stn. maltophilia
\ Al. rava
F. nuéleatum
. Prv. loescheii
Str@hitis, Rh. erythropolis
HI. pylori
Prp. endodontalis
Prv. oris
cancer metaplasia gastritis @ dysplasia healthy

Figure S11: Interaction network between species relevant for disease progress (ERP023334). The top 50 species relevant for distinction
between healthy four disease stages are displayed. Only species with interactions are shown. Co-exclusion interactions are displayed in red.
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We can further investigate species differences by inferring prevalence differences between disease states of
samples, using x? testing, tables S4-S8. P-values were computed with Monte Carlo tests, 10,000 replicates.

Table S9: Prevalence differences between sample locations, SRP172818. Pearson’s x2 p-values were computed by Monte Carlo simulation.

species association pvalue normal peripherical  tumor count
Fusobacterium mortiferum normal 1.0e-03 *** 9/57(15.8%) 0/57 (0.0%) 0/59 (0.0%) 9
Streptomyces atroolivaceus normal 3.0e-03 ** 7/57(12.3%) 1/57 (1.8%) 0/59 (0.0%) 8
Peptostreptococcus stomatis peripherical,tumor 1.3e-02 * 15/57 (26.3%) 24/57 (42.1%) 32/59 (54.2%) 71
Corynebacterium tuberculostearicum tumor 1.0e-03 *** 2/57 (3.5%) 1/57 (1.8%) 13/59 (22.0%) 16
Rudaeicoccus suwonensis tumor 1.0e-03 *** 3/57 (5.3%) 7/57 (12.3%) 18/59 (30.5%) 28
Propionibacterium acnes tumor 1.0e-03 *** 25/57 (43.9%) 22/57 (38.6%) 43/59 (72.9%) 90
Bifidobacterium dentium tumor 1.0e-03 *** 2/57(3.5%) 3/57 (5.3%) 14/59 (23.7%) 19
Actinomyces odontolyticus tumor 3.0e-03 ** 1/57(1.8%)  7/57 (12.3%) 14/59 (23.7%) 22
Deinococcus citri tumor 3.0e-03 ** 1/57 (1.8%) 0/57 (0.0%) 8/59 (13.6%) 9
Fusobacterium periodonticum tumor 4.0e-03 ** 1/57 (1.8%) 6/57 (10.5%) 12/59 (20.3%) 19
Rothia mucilaginosa tumor 5.0e-03 ** 10/57 (17.5%) 11/57 (19.3%) 25/59 (42.4%) 46
Campylobacter rectus tumor 5.0e-03 ** 1/57 (1.8%) 0/57 (0.0%) 8/59 (13.6%) 9
Fusobacterium nucleatum tumor 6.0e-03 ** 8/57 (14.0%) 12/57 (21.1%) 23/59 (39.0%) 43
Helicobacter pylori tumor 3.7e-02 * 47/57 (82.5%) 51/57 (89.5%) 57/59 (96.6%) 155
Prevotella melaninogenica tumor 4.2e-02 * 2/57 (3.5%) 4/57 (7.0%) 10/59 (16.9%) 16
Parvimonas micra tumor 7.7e-02 15/57 (26.3%) 14/57 (24.6%) 25/59 (42.4%) 54

Table $10: Prevalence differences between sample locations, SRP128749. Pearson’s x2 p-values were computed by Monte Carlo simulation.

species association pvalue normal peripherical tumor count
Nocardioides szechwanensis normal 1.0e-03 *** 9/225 (4.0%) 1/215 (0.5%) 0/229 (0.0%) 10
Bifidobacterium longum normal 1.0e-03 *** 42/225(18.7%) 4/215(1.9%) 18/229 (7.9%) 64
Prevotella stercorea normal 1.0e-03 *** 22/225 (9.8%) 2/215 (0.9%) 9/229 (3.9%) 33
Clostridium cellulovorans normal 1.0e-03 *** 16/225(7.1%)  2/215(0.9%) 1/229 (0.4%) 19
Roseburia inulinivorans normal 1.0e-03 *** 10/225 (4.4%) 0/215 (0.0%) 2/229 (0.9%) 12
Fusobacterium mortiferum normal 1.0e-03 *** 25/225(11.1%) 3/215 (1.4%) 1/229 (0.4%) 29
Bacteroides uniformis normal 3.0e-03 ** 17/225(7.6%) 2/215 (0.9%) 9/229 (3.9%) 28
Barnesiella intestininominis normal 3.0e-03 ** 7/225(3.1%) 0/215 (0.0%) 0/229 (0.0%) 7
Deinococcus aetherius normal 3.0e-03 ** 6/225(2.7%) 0/215 (0.0%) 0/229 (0.0%) 6
Sulfurospirillum deleyianum normal 5.0e-03 ** 6/225 (2.7%) 0/215 (0.0%) 0/229 (0.0%) 6
Nitrospira japonica normal 6.0e-03 ** 11/225(4.9%) 2/215 (0.9%) 2/229 (0.9%) 15
Parabacteroides merdae normal 7.0e-03 ** 5/225 (2.2%) 0/215 (0.0%) 0/229 (0.0%) 5
Faecalibacterium prausnitzii normal,tumor 1.0e-03 *** 127/225 (56.4%) 71/215(33.0%) 111/229 (48.5%) 309
Ruminococcus bromii normal,tumor 1.0e-03 *** 57/225(25.3%) 14/215 (6.5%) 42/229 (18.3%) 113
Arthrobacter oxydans normal,tumor 2.0e-03 ** 47/225(20.9%) 28/215(13.0%) 62/229(27.1%) 137
Pyramidobacter piscolens normal,tumor 4.0e-03 ** 17/225(7.6%) 2/215 (0.9%) 11/229 (4.8%) 30
Atopobium rimae normal,tumor 6.0e-03 ** 13/225 (5.8%) 4/215 (1.9%) 19/229 (8.3%) 36
Roseomonas gilardii peripherical 3.0e-03 ** 4/225(1.8%) 20/215 (9.3%) 12/229 (5.2%) 36
Sphingomonas yabuuchiae peripherical 4.0e-03 ** 66/225(29.3%) 94/215(43.7%) 82/229 (35.8%) 242
Helicobacter pylori peripherical,tumor 5.7e-02 155/225 (68.9%) 169/215 (78.6%) 175/229 (76.4%) 499
Corynebacterium tuberculostearicum tumor 1.0e-03 *** 10/225 (4.4%) 8/215 (3.7%) 30/229 (13.1%) 48
Propionibacterium acnes tumor 1.0e-03 *** 82/225(36.4%) 65/215(30.2%) 140/229 (61.1%) 287
Gardnerella vaginalis tumor 1.0e-03 *** 2/225 (0.9%) 1/215 (0.5%) 12/229 (5.2%) 15
Thermus scotoductus tumor 1.0e-03 *** 63/225(28.0%) 48/215(22.3%) 93/229 (40.6%) 204
Parvimonas micra tumor 1.0e-03 *** 39/225(17.3%) 40/215(18.6%) 85/229 (37.1%) 164
Catonella morbi tumor 1.0e-03 *** 7/225(3.1%) 8/215 (3.7%) 29/229 (12.7%) 44
Peptostreptococcus stomatis tumor 1.0e-03 *** 52/225 (23.1%) 60/215(27.9%) 130/229 (56.8%) 242
Fusobacterium nucleatum tumor 1.0e-03 *** 34/225(15.1%) 45/215 (20.9%) 82/229 (35.8%) 161
Leptotrichia wadei tumor 1.0e-03 *** 13/225 (5.8%) 20/215 (9.3%) 40/229 (17.5%) 73
Sphingomonas faeni tumor 1.0e-03 *** 29/225(12.9%) 47/215(21.9%) 71/229(31.0%) 147
Campylobacter showae tumor 1.0e-03 *** (/225 (0.0%) 1/215 (0.5%) 14/229 (6.1%) 15
Corynebacterium mucifaciens tumor 3.0e-03 ** 4/225(1.8%) 10/215 (4.7%) 21/229 (9.2%) 35
Filifactor alocis tumor 3.0e-03 ** 9/225 (4.0%) 13/215(6.0%)  27/229 (11.8%) 49
Prevotella melaninogenica tumor 5.3e-01 13/225 (5.8%) 14/215 (6.5%) 19/229 (8.3%) 46
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Table S11: Prevalence differences between disease stages, SRP070925. Pearson’s x2 p-values were computed by Monte Carlo simulation.

species association pvalue advanced.cancer early.cancer  gastritis metaplasia count
Peptostreptococcus stomatis advanced cancer 4.0e-01 3/20 (15.0%) 0/20 (0.0%) 1/20 (5.0%) 1/20 (5.0%) 5
Novosphingobium sediminicola early cancer,advanced cancer 1.0e-03 *** 15/20 (75.0%) 17/20 (85.0%) 0/20 (0.0%) 6/20 (30.0%) 38
Methylobacterium populi gastritis 1.0e-03 *** 7/20(35.0%) 6/20(30.0%) 17/20 (85.0%) 8/20 (40.0%) 38
Sphingomonas hunanensis gastritis 9.0e-03 ** 1/20 (5.0%) 1/20 (5.0%) 8/20 (40.0%) 3/20 (15.0%) 13
Sphingobium amiense gastritis 1.0e-02 ** 0/20 (0.0%) 0/20 (0.0%)  4/20(20.0%) 0/20 (0.0%) 4
Parvimonas micra gastritis,advanced cancer 4.8e-01 3/20 (15.0%) 1/20 (5.0%) 2/20(10.0%) 0/20 (0.0%) 6
Sphingomonas faeni gastritis,early cancer 1.0e-02 ** 2/20(10.0%) 5/20 (25.0%) 10/20 (50.0%) 2/20 (10.0%) 19
Modestobacter multiseptatus  gastritis,metaplasia 1.0e-03 *** (/20 (0.0%) 1/20 (5.0%) 10/20 (50.0%) 7/20 (35.0%) 18
Hyphomonas polymorpha gastritis,metaplasia 1.0e-03 *** 4/20 (20.0%) 0/20 (0.0%) 16/20 (80.0%) 7/20 (35.0%) 27
Paenibacillus humicus gastritis,metaplasia 4.0e-03 ** 10/20 (50.0%) 12/20 (60.0%) 18/20 (90.0%) 18/20 (90.0%) 58
Prevotella melaninogenica gastritis,metaplasia 4.8e-01 3/20 (15.0%) 4/20(20.0%) 6/20(30.0%) 7/20 (35.0%) 20
Helicobacter pylori gastritis,metaplasia 6.3e-01 13/20 (65.0%) 12/20 (60.0%) 14/20 (70.0%) 16/20 (80.0%) 55
Fusobacterium nucleatum metaplasia,advanced cancer 1.9e-01 8/20 (40.0%) 4/20(20.0%) 2/20(10.0%) 5/20 (25.0%) 19
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Table S12: Prevalence differences between disease stages, ERP023334. Pearson’s x2 p-values were computed by Monte Carlo simulation.

species association pvalue cancer dysplasia gastritis healthy metaplasia count
Corynebacterium pseudodiphtheriticum dysplasia 1.0e-03 *** 0/10 (0.0%) 4/8(50.0%) 0/44 (0.0%) 1/22 (4.5%) 0/9 (0.0%) 5
Parvimonas micra gastritis 7.8e-01 0/10 (0.0%) 0/8 (0.0%) 2/44 (4.5%) 0/22 (0.0%) 0/9 (0.0%) 2
Staphylococcus hominis gastritis,dysplasia 3.0e-03 ** 0/10(0.0%) 5/8(62.5%) 11/44(25.0%) 3/22(13.6%) 0/9 (0.0%) 19
Prevotella fusca healthy 1.0e-03 *** 0/10(0.0%) 0/8 (0.0%) 0/44 (0.0%)  8/22(36.4%) 0/9 (0.0%) 8
Tannerella forsythia healthy 2.0e-03 ** 3/10(30.0%) 3/8(37.5%) 13/44(29.5%) 16/22 (72.7%) 1/9 (11.1%) 36
Prevotella loescheii healthy 2.0e-03 ** 3/10(30.0%) 1/8(12.5%) 9/44(20.5%) 15/22 (68.2%) 1/9 (11.1%) 29
Prevotella oulorum healthy 2.0e-03 ** 3/10(30.0%) 3/8 (37.5%) 12/44(27.3%) 17/22 (77.3%) 2/9 (22.2%) 37
Prevotella veroralis healthy 2.0e-03 ** 1/10(10.0%) 1/8 (12.5%) 6/44(13.6%) 13/22(59.1%) 1/9 (11.1%) 22
Treponema amylovorum healthy 2.0e-03 ** 0/10(0.0%) 0/8(0.0%) 3/44 (6.8%) 8/22 (36.4%) 0/9 (0.0%) 11
Prevotella dentalis healthy 3.0e-03 ** 1/10(10.0%) 1/8(12.5%) 2/44(4.5%) 9/22(40.9%) 0/9 (0.0%) 13
Prevotella pallens healthy 3.0e-03 ** 3/10(30.0%) 3/8(37.5%) 17/44(38.6%) 17/22(77.3%) 1/9 (11.1%) 41
Haemophilus sputorum healthy 3.0e-03 ** 0/10(0.0%) 0/8 (0.0%) 0/44 (0.0%) 6/22 (27.3%) 0/9 (0.0%) 6
Treponema denticola healthy 4,0e-03 ** 2/10(20.0%) 1/8(12.5%) 6/44(13.6%) 11/22(50.0%) 0/9 (0.0%) 20
Propionibacterium acnes healthy 4.5e-02 * 1/10(10.0%) 2/8 (25.0%) 8/44(18.2%) 11/22(50.0%) 2/9 (22.2%) 24
Porphyromonas endodontalis healthy,cancer 1.0e-03 *** 4/10 (40.0%) 2/8 (25.0%) 9/44 (20.5%) 19/22 (86.4%) 3/9 (33.3%) 37
Alloprevotella rava healthy,cancer 1.0e-03 *** 4/10 (40.0%) 2/8 (25.0%) 8/44 (18.2%) 17/22(77.3%) 1/9 (11.1%) 32
Solobacterium moorei healthy,cancer 1.0e-03 *** 3/10 (30.0%) 2/8 (25.0%) 6/44(13.6%) 13/22 (59.1%) 0/9 (0.0%) 24
Actinomyces graevenitzii healthy,dysplasia 1.0e-03 *** 1/10(10.0%) 5/8 (62.5%) 12/44 (27.3%) 15/22 (68.2%) 2/9 (22.2%) 35
Actinomyces odontolyticus healthy,dysplasia 1.0e-03 *** 5/10 (50.0%) 8/8 (100.0%) 18/44 (40.9%) 19/22 (86.4%) 4/9 (44.4%) 54
Prevotella oris healthy,dysplasia 1.0e-03 *** 2/10(20.0%) 5/8 (62.5%) 12/44(27.3%) 18/22(81.8%) 2/9 (22.2%) 39
Capnocytophaga gingivalis healthy,dysplasia 1.0e-03 *** 2/10(20.0%) 4/8 (50.0%) 8/44(18.2%) 15/22(68.2%) 2/9 (22.2%) 31
Selenomonas dianae healthy,dysplasia 1.0e-03 *** 3/10(30.0%) 4/8 (50.0%) 12/44(27.3%) 18/22(81.8%) 1/9 (11.1%) 38
Lautropia mirabilis healthy,dysplasia 1.0e-03 *** 2/10(20.0%) 5/8 (62.5%) 10/44 (22.7%) 16/22(72.7%) 1/9 (11.1%) 34
Neisseria elongata healthy,dysplasia 1.0e-03 *** 1/10(10.0%) 3/8 (37.5%) 9/44 (20.5%) 17/22(77.3%) 1/9 (11.1%) 31
Campylobacter curvus healthy,dysplasia 1.0e-03 *** 4/10(40.0%) 6/8 (75.0%) 17/44(38.6%) 19/22 (86.4%) 3/9 (33.3%) 49
Aggregatibacter segnis healthy,dysplasia 1.0e-03 *** 0/10(0.0%) 2/8(25.0%) 7/44(15.9%) 12/22(54.5%) 1/9 (11.1%) 22
Haemophilus parainfluenzae healthy,dysplasia 1.0e-03 *** 4/10(40.0%) 8/8 (100.0%) 17/44 (38.6%) 19/22 (86.4%) 2/9 (22.2%) 50
Porphyromonas catoniae healthy,dysplasia 2.0e-03 ** 2/10(20.0%) 5/8 (62.5%) 16/44(36.4%) 17/22 (77.3%) 2/9 (22.2%) 42
Alloprevotella tannerae healthy,dysplasia 2.0e-03 ** 2/10(20.0%) 4/8 (50.0%) 16/44 (36.4%) 17/22(77.3%) 1/9 (11.1%) 40
Veillonella atypica healthy,dysplasia 2.0e-03 ** 4/10(40.0%) 7/8 (87.5%) 16/44 (36.4%) 15/22 (68.2%) 1/9 (11.1%) 43
Veillonella parvula healthy,dysplasia 3.0e-03 ** 3/10(30.0%) 6/8 (75.0%) 15/44 (34.1%) 15/22 (68.2%) 1/9 (11.1%) 40
Prevotella intermedia healthy,dysplasia 4,0e-03 ** 1/10(10.0%) 2/8 (25.0%) 6/44(13.6%) 12/22 (54.5%) 0/9 (0.0%) 21
Prevotella salivae healthy,dysplasia 4.0e-03 ** 5/10(50.0%) 7/8 (87.5%) 21/44 (47.7%) 19/22 (86.4%) 2/9 (22.2%) 54
Bradyrhizobium elkanii healthy,dysplasia 4,0e-03 ** 0/10(0.0%) 3/8(37.5%) 0/44(0.0%) 3/22(13.6%) 0/9 (0.0%) 6
Stenotrophomonas maltophilia healthy,dysplasia 5.0e-03 ** 0/10(0.0%) 3/8(37.5%) 6/44(13.6%) 10/22(45.5%) 1/9 (11.1%) 20
Streptococcus parasanguinis healthy,dysplasia,cancer 1.0e-03 *** 7/10(70.0%) 8/8 (100.0%) 16/44 (36.4%) 20/22 (90.9%) 4/9 (44.4%) 55
Neisseria bacilliformis healthy,dysplasia,cancer 1.0e-03 *** 2/10 (20.0%) 2/8 (25.0%) 2/44 (4.5%) 11/22 (50.0%) 0/9 (0.0%) 17
Atopobium parvulum healthy,dysplasia,cancer 3.0e-03 ** 3/10(30.0%) 3/8(37.5%) 7/44(15.9%) 12/22(54.5%) 0/9 (0.0%) 25
Fusobacterium nucleatum healthy,dysplasia,cancer 1.0e-02 ** 8/10(80.0%) 7/8 (87.5%) 25/44 (56.8%) 18/22(81.8%) 2/9 (22.2%) 60
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Table S13: Prevalence differences between disease stages, ERP023334. Pearson's x2 p-values were computed by Monte Carlo simulation.

species association pvalue functional.dyspepsia gastric.cancer gastric.ulcer count
Helicobacter pylori functional dyspepsia 1.0e+00 4/6 (66.7%) 9/15 (60.0%) 8/13 (61.5%) 21
Methylobacterium radiotolerans functional dyspepsia,gastric ulcer 1.0e-03 *** 6/6 (100.0%) 5/15(33.3%) 13/13(100.0%) 24
Lactococcus lactis gastric cancer 1.0e-03 *** 2/6 (33.3%) 12/15 (80.0%) 1/13 (7.7%) 15
Peptostreptococcus stomatis gastric cancer 3.6e-01 0/6 (0.0%) 2/15(13.3%) 0/13 (0.0%) 2
Parvimonas micra gastric cancer 1.0e+00 0/6 (0.0%) 1/15 (6.7%) 0/13 (0.0%) 1
Prevotella melaninogenica gastric cancer,gastric ulcer 2.3e-01 0/6 (0.0%) 6/15(40.0%) 4/13(30.8%) 10
Fusobacterium nucleatum gastric cancer,gastric ulcer 8.1e-01 1/6 (16.7%) 5/15 (33.3%) 5/13(38.5%) 11
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Figure S12: Discriminating species in CRC. Data sets a) SRP137015 and b) SRP076561. Only species with interactions are displayed. Location
associations are based on maximum mean relative abundance. Co-exclusion is indicated in red.

comparison with CRC

We test two CRC data sets for presence and interactions of F. nucleatum, P. micra and P. stomatis. Data set
SRP117763 (n=34, tumor-only) was published by [23] and data set SRP137015 (n=211, tumor/peripherical/normal)
by [24, 25]. We find F. nucleatum in interaction with P. stomatis in SRP137015 and P. micra in interaction with P.
stomatis in SRP117763, figure S12. Prevalence of F. nucleatum is over 70% in tumor samples in SRP117763, table
S9 and at 48% in SRP137015, table S10.

Table S14: Prevalence differences between CRC subtypes, SRP117763. Pearson's x? p-values were computed by Monte Carlo simulation.

species association  pvalue CMS1 CMS2 CMS3 count
Clostridium cadaveris CMS1 8.0e-03 ** 4/6(66.7%) 2/13(15.4%) 0/10 (0.0%) 6
Parvimonas micra CMS1,CMS2 5.0e-02 * 3/6(50.0%) 8/13(61.5%) 1/10 (10.0%) 12
Peptostreptococcus stomatis CMS1,CMS2  1.9e-01 2/6 (33.3%) 6/13(46.2%) 1/10(10.0%) 9
)
)

Prevotella melaninogenica CMS1,CMS2  6.8e-01 1/6 (16.7%) 1/13(7.7%)  0/10(0.0%) 2
Fusobacterium nucleatum CMS1,CMS2 1.0e+00 5/6 (83.3%) 10/13(76.9%) 7/10 (70.0%) 22

Table S15: Prevalence differences between CRC sample locations, SRP137015. Pearson's x2 p-values were computed by Monte Carlo simula-
tion.

species association pvalue normal peripherical ~ tumor count
Prevotella melaninogenica normal 1.0e+00 1/103 (1.0%) 0/46 (0.0%) 0/62 (0.0%) 1

Bacteroides vulgatus normal,peripherical 3.0e-03 ** 80/103(77.7%) 38/46 (82.6%) 34/62(54.8%) 152
Peptostreptococcus stomatis peripherical,tumor 1.7e-01 12/103 (11.7%) 8/46 (17.4%) 14/62 (22.6%) 34

Campylobacter gracilis tumor 1.0e-03 *** 1/103(1.0%) 1/46(2.2%) 8/62(12.9%) 10
Fusobacterium nucleatum tumor 2.0e-03 ** 20/103(19.4%) 12/46 (26.1%) 30/62 (48.4%) 62
Parvimonas micra tumor 3.0e-03 ** 5/103 (4.9%) 5/46 (10.9%) 14/62 (22.6%) 24

14/17



Revised manuscript

a b
Dr. formicigenerans Mthyp%di%}cl)lrgirgggearum
Bc.(dorei :
Bf. longum . Phs. faggium
' Rm. calidus Phs. sugcinatutens
> . Ek. corrodens

Str s@arius Blp. wadsworthia

Fc. prausnitzii BIt. luti
S. @OMBHBillorum
Cls. cadaveris Hm. pard@ifiuenzae Blt. oeurhadrus
Hn. hathewayi \ Prv.@icra
Pp. stomatis Dr. longicatena :
Fs. nucleatum Prvm.micra oh th)g_Cp. catus Fs Dnlijglr;eattjlrjnn?smte
. hathewayi '

Dr. longicatena

) , Dr. formicigenerans
Str.’oralis  Sin. sputigena 9

. . Ac: junii
V. dispar | Slb. moorei Cp. comes Mthr. silvanus
Sin. nxia Gm. formicilis Brd. liagpi lcum
Acn. baumannii ICr. ulcerans
Cp. @omes Cm. testosteroni Cll. aé’&é?éﬁ?rev's
CMS1 CMS2 CMS3 tumor normal

Figure S13: Discriminating species in CRC. Data sets a) SRP117763 and b) ERP005534 Only species with interactions are displayed. Location
associations are based on maximum mean relative abundance. Co-exclusion is indicated in red.

Table S16: Prevalence differences between CRC sample locations, SRP076561. Pearson's x2 p-values were computed by Monte Carlo simula-
tion.

species association pvalue CRC Normal count
Fusobacterium nucleatum tumor 0.13  19/26 (73.1%) 12/24 (50.0%) 31
Prevotella melaninogenica tumor 1.00 1/26 (3.8%) 0/24 (0.0%) 1
Propionibacterium acnes normal 0.15 8/26 (30.8%) 13/24 (54.2%) 21
Helicobacter pylori normal 0.58 14/26 (53.8%) 15/24 (62.5%) 29
Parvimonas micra normal 0.60 15/26 (57.7%) 16/24 (66.7%) 31
Peptostreptococcus stomatis normal 1.00 16/26 (61.5%) 15/24 (62.5%) 31

Table S17: Prevalence differences between CRC sample locations, ERP005534. Pearson's x2 p-values were computed by Monte Carlo simula-
tion.

species association pvalue normal tumor count

Parvimonas micra 1.00 33/48 (68.8%) 33/48 (68.8%) 66

Prevotella melaninogenica normal 0.51 2/48 (4.2%) 0/48 (0.0%) 2

Fusobacterium nucleatum tumor 0.11 31/48 (64.6%) 39/48 (81.2%) 70

Peptostreptococcus stomatis tumor 0.68 22/48 (45.8%) 25/48 (52.1%) 47
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