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Innovation

Introduction and background

Snakes are a versatile species, made up of elongated, legless, car-
nivorous reptiles of the suborder Serpentes.1 The most distinctive 
feature of the snakes are its fangs and, in some, venomous glands.2 
The venom produced in venomous glands reaches the fangs 
through an anatomical tubing that is known as venomous ducts. 
The ducts open into the fangs, which are sharp and pointed tooth-
like structures that help to inject the venom into a prey’s body upon 
biting (Fig. 1).

Venom is a clear, viscous fluid of amber or poisonous straw-
colored fluid, comprised of many biologically active agents, such 
as proteases and hyaluronidase, metal ions, biogenic amines, lipids 
and free amino acids, etc. However, only 80 large and small pro-
teins and polypeptides have been identified to date.3 Interestingly, 
most of the snake species are not venomous; although, for those 
that are, the venom is generally used for self-protection and obtain-
ing food. The snake venoms are broadly classified into three types: 
1) neurotoxic; 2) cytotoxic; and, 3) hemotoxic. The neurotoxins 
affect the central nervous system,4 while the cytotoxins kill the 
cells in a particular area, where the bite occurs5 and the hemotoxic 

attacks the cardiovascular system.6
Chemically, the toxins are composed of four main categories, 

including enzymes, glycoproteins, polypeptides and low molecu-
lar weight molecules. The enzymes, in particular, are represented 
by amino acid oxidase, thrombin-like procoagulant, kallikrein-
like serine proteases metalloproteinases and phospholipase A2. 
Different types of toxins are present in the venom and the pro-
file varies from species to species, primarily for α-bungarotoxin, 
α-cobratoxin, α-toxin, erabutoxin, notexin, ammodytoxin, cardio-
toxin, cytotoxin, myotoxin-a, crotamine and peptides like pyro-
glutamylpeptide.7–10 The toxins primarily participate in immuno-
genic reactions when the venom is injected into the host body. In 
the case of snake bites, antivenom or antiserum immunoglobulins 
are employed to treat the patient. Antivenom includes a monova-
lent antibody or commonly used polyvalent antibody against the 
venom.9

The biosensor is a tiny analytical device, capable of converting 
biological information into a detectable signal.11 As such, the de-
vice is able to determine the concentration of substances and other 
parameters of biological interest. This noninvasive technique is 
highly advantageous for its high accurately and sensitivity.12 In 
modern-day medicine, the biosensor is widely used, for various 
applications, to determine a broad range of factors, such as blood 
glucose, cholesterol, catechol and bilirubin, etc.13 Examples in-
clude the amperometric biosensor PDMS/glass capillary electro-
phoresis biosensor microchip developed by Schoning et al.14 for 
the detection of catechol and dopamine, the biosensors employed 
in forensic science for the detection of DNA, and the microbial 
biosensors utilized for the detection of pathogenic microorgan-
isms.15

Most significantly, any biosensor is very specific and accurate, 
and requires the smallest amount of analyte for detection. Basi-
cally, the device is comprised of sensing material (bioreceptor), 
a transducer and a detector. The receptor may be an enzyme, an-
tibody, microorganism or a cell, which senses the presence of the 
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desired substance in the analyte, resulting in a chemical, physical 
or electrical change in the transducer. The transduced signal is then 
subjected to amplification and subsequent display by the detector 
of the analyte in a quantified manner.12,15,16

Biosensors have been used as an integrated part of many sys-
tems for regular monitoring, primarily in food processing to deter-
mine quality and safety.17,18 Various sensors are well designated 
for different kinds of applications, like E. coli detection in vegeta-
bles by the detection of change in pH,19 enzymatic detection of ag-
ing of beer,20 and contamination of food.21 Even more, the sensors 
are utilized for continuous monitoring of food substances in transit 
and during processing.22,23

According to recent statistics, around 50,000 deaths due to 
snake bites occur annually in India,24 and time is one of the crucial 
factors for treatment. Injection of antisnake venom (ASV) is the 
best practice for snake bite treatment. The maximum number of 
deaths occur from the bite of the most abundant venomous snakes, 
including the Indian cobra, Indian krait, Russell’s viper, Saw-
scaled viper and Indian pit viper. Table 1 presents the different 
venomous snakes and their nature of toxicity.25

Mostly, the antivenom consists of antibodies collected from 
immunized animals. The antibodies are collected from the animal 
serum, which is subjected to a specific venom type by a number 
of doses for specific time intervals.26 Owing to the advantages of 
the treatment, it benefits outweigh the side effects in many cases, 
but sometimes it leads to mortality of the patient.27 Also, in many 
cases, the injection of ASV leads to anaphylactic shock.28 Besides 
antibodies, molecules like melatonin, are reported to underlie the 
antivenom effect. The study of such was established in Egyptian 
cobra (Naja haje) venom using a rat model; the vital organs, like 
kidney, liver and heart, of the rat was protected from the venomous 
effect.29

Usually, the antivenom is synthesized using two methodolo-
gies: 1) monomeric and 2) polymeric.30 The monomeric antiven-
om is produced against single species venom, while for polymeric, 
a venom mixture of different species is injected into the target ani-
mal.31 The polymeric antivenom is nonspecific and less effective 
than the monomeric. Even in the 21st century, nonspecific poly-
meric antivenom is commonly administrated for snake bites and 
achieves chaotic results, when the snake is unknown.32,33 Due to 
the lack of proper diagnosis technology for rapid identification of 
the venom type/snake, the dicey therapy leads to death in many 
cases.

There is a critical need to develop a technology to detect the 
venom type accurately and rapidly, to facilitate administration of 
the precise ASV. It is well documented that the general random 
practice of ASV creates serious complications, which may ap-
pear immediately or over the long-term. Predominantly, adverse 
effects are observed immediately in 20% of cases (within a few 
hours)34 and in extended time death occurs due to envenomation 
of the ASV. The gravity of the situation is further complicated by 
the lack of knowledge regarding the diagnosis and management of 
such conditions.35 One vital study reported by Deshpande et al.36 
concluded that 92 patients out of 164 who were treated with ASV 
(>50%) suffered from antivenom reactions. So, there is an urgent 
need for a device/kit that is capable of identifying the venomous 
snake for better ASV.

A handfull of techniques have been developed for detection of 
the specific snake venom for better treatment, but the modalities 
have achieved limited success. Dong et al.37 developed a silicon-
based optical biosensor chip with specific binding affinity. In it, 
once the optical source is illuminated, the chip changes its color 
from purple to blue if antibody binding has taken place. The kit is 
able to semi-quantitatively detect venom from blood, urine, feces 
and bile. Zahani et al.38 developed an impedometric biosensor for 
the detection of phospholipase A2 activity in snake venom, which 
is responsible for inflammation and pain at the site of injection. 
Similarly, Pawade et al.39 developed a lateral flow-based immuno-
chromatographic assay with application of gold nanoparticles for 
detection of the Indian Cobra venom and Russell’s viper venom. 
In addition, Shaikh et al.40 developed a dot ELISA-based specific 
snake venom detection technique for Indian snakes; however, the 
techniques are intended for specific venom detection and their ap-
plications are limited by high time-consumption. Furthermore, the 
aforementioned techniques have employed antibodies of rat and 
rabbit origin. Hence, the best possible method may be a simple 

Table 1.  Most commonly found venomous snakes in the Indian subcon-
tinent and toxicity type25

Snake name Venom type

Indian cobra, spectacled cobra Neurotoxic

Indian krait Neurotoxic

Russell’s viper Hemotoxic

Saw-scaled viper Hemotoxic and cytotoxic

Indian pit vipers Cytotoxic

Fig. 1. The anatomical presence of the venom gland with fangs, primary duct, secondary duct and compressive muscle in the snakehead. 
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blood test for a rapid detection technique.
One commercial product is available for specific detection of 

venom of five different kinds of Australia- and Papua New Guinea-
originated snakes. The colorimetric enzyme immunoassay assists 
in selection of the monovalent antivenom to neutralize the snake 
venom involved in the bite.41 While the method provides high 
sensitivity to determine the venom type, it has some constraints. 
As per the manufacturer’s information, the assay method is highly 
time-consuming, needing at least 35–45 min to get the result; more 
significantly, the assay provides equivocal reactions in case of high 
concentration sample testing, involves multiple complicated sam-
ple processing steps and stringent storage conditions, and needs a 
trained person with good laboratory practices for proper results. 
Therefore, there is a need for a simple methodology to identify 
the snake venom for administering an antidote with minimal time. 
Most importantly, the South Asian countries like India need a high-
ly specific and simple kit for diagnosing venom type, since there 
is a lack of specialized labs and persons to process the analysis.

Hypothesis

The basic idea behind this hypothesis is to develop a device or kit 
which can detect the type of snake by analyzing its venom. Moreo-
ver, the device can be designed in such a way that it can detect the 
venom type from a blood sample, which can be collected from 
either the bite site or the bloodstream. Even more, it will help to 
identify whether the bite is venomous or nonvenomous, so as to 
avoid unnecessary ASV administration and the subsequent trauma. 
The hypothesis is based on a chip-based biosensor to detect venom 
type for better treatment. The sensor will give the information by 
the formation of an immune complex by agglutination of the spe-
cific antivenom antibodies with the venom. Initially, the selected 
antibodies of different antivenom types will be immobilized on the 
transducer surface of the sensor. Once the sample is collected from 
the patient, it is immediately analyzed by the sensor, which gener-
ates a signal that will suggest the venom type by its specific bind-
ing with immobilized antivenom antibody. The result will be ob-
tained from the transducer (possibly a quartz crystal microbalance) 
in the form of electric signal generation by mass variation on the 
sensor surface through aggregation of the antigen of venom bind-
ing with the immobilized antibody (Fig. 2).

Evaluation of the hypothesis

Isolation of specific antibodies

Antibodies against specific venom are obtained by immuniza-
tion of hens with the particular venom collected from the selected 
snakes. Following the immunization, the antibodies will be iso-
lated from the egg yolk.42,43

Immunization procedure

A handful of literature is available for the immunization of dif-
ferent animal models with various methodologies. Conventionally, 
the antivenom antibodies are isolated from an immunized horse, 
goat or rabbit. Nevertheless, it exhibits the major constraints of an 
anti-compliment reaction,44,45 serum sickness46 and anaphylactic 
shock.47,48 Moreover, the isolation and standardization of the puri-
fied antibodies is a tedious process.

As per the literature, the hen’s egg procedure is the best pos-
sible, safe and easy isolation method. Briefly, the laying hens will 
be immunized with the interested (Indian-origin snake venoms in 
the present proposal) snake venoms in different groups for specific 
periods and the specific procedure shown in Figure 3. Initially, the 
chickens of a specific breed free-from-pathogens (fed and bred in 
a clean environment) are selected for the procedure. After specific 
growth, the hen is subjected to the administration of small doses of 
venom by injection into the pectoralis muscle.49 Before injection, 
the venom is exposed to radiation to reduce its toxicity.50,51 Fur-
ther, the eggs of the immunized hens will be collected and the iso-
lated yolk will be frozden at −20 °C for the subsequent procedure. 
The supernatant collected by centrifugation and filtered by various 
stages52 will be used to obtain the antibodies upon precipitation by 
addition of ammonium sulfate.53,54

The antibodies will be immobilized onto the transducer which 
detects the change in physical or chemical changes.55 The impor-
tant factor to be optimized is the concentration of the antibodies 
and their orientation. Antibody orientation will be achieved by 
slight modification through adding bifunctional thiol containing 
reagents.56 Different antivenom antibodies will be collected from 
the eggs of different hens, which have been immunized with a 
unique venom type. The isolated antibodies are immobilized on 

Fig. 2. Block diagram of the biosensor showing the immobilization of different antivenom antibodies on the transducer surface. Specific interaction of the 
venom to its counterpart will generate a detectable specific signal to identify the snake species.
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the discrete receptor surfaces of the biosensors. The generated sig-
nal during antigen-antibody interaction is amplified using ampli-
fiers circuits, for better scrutiny.57

Bruce et al.58 isolated rattlesnake and scorpion antibodies from 
the aforementioned method. Similarly, Mayadevi et al.50 employed 
the same method, with slight modification in the lipid removal 
method to isolate antiviper antibodies. Paul et al.59 isolated and 
purified antibodies of anti-Echis carinatus venom from egg yolk 
by the water dilution method.

Detection principle

The collected blood sample from the wound site interacts with 
the biosensor. The antibodies present on the biosensor specifi-
cally bind with the venom as a result of agglutination, changing 
the physical or chemical state at the receptor site. The change can 
be detected by various technologies; the highly sensitive quartz 
crystal microbalance (QCM) is the best recommend transducer 
and recognizes frequency change with mass variance.60 QCM pos-
sesses very high accuracy rate and detects mass densities of 1µg/
cm2.61 It can perform even under vacuum. A wide variety of im-
mobilization techniques can be employed for fabrication of a bio-
sensor in QCM. It can also detect the difference in nano-gram/unit 
area by measuring the change in resonant frequency.62 Structurally, 
the QCM quartz crystal is sandwiched between two “T” shaped 
electrodes and connected to electric terminals to supply voltage. 
The immobilized antibody on QCM selectively interacts with its 
counterpart and causes the mass change. The result of mass change 
can cause the resonance frequency shift, to help in quantification 
of the analyte. The frequency change depends on various factors, 
like mass, shape, structure and thickness of the analyte.62,63

In recent days, QCM has shown massive advancement in bio-
sensor application. Park et al.60 fabricated a hemoglobin QCM 
biosensor with high sensitivity of detection (limit of 0.147%) for 
HbA1c (hemoglobin A1c) against hemoglobin. Similarly, Şerife et 
al.64 developed a QCM-based highly sensitive biosensor for detec-
tion of ochratoxin A, with a reported detection limit of 17.2–200 

ng/mL. Interestingly, the sensitivity of QCM can differentiate the 
normal to physiological conditions, like for C-reactive protein, 
which is a key biomarker for inflamed liver and related disorders.

The intended biosensor will exhibit high sensitivity, with linear-
ity detection ranging from 0.04–100 µg/mL and lower detection 
limit of 0.02 µg/mL.65 Similarly, Lourdes et al.66 developed the 
High Fundamental Frequency QCM-based Immunosensor for de-
tection of pesticides in honey. The sensor exhibits a limit of detec-
tion of 0.035 µg/mL in a diluted honey sample. Furthermore, the 
QCM demonstrates high sensitivity, and is cost-effective, fast and 
reliable compared to the conventional techniques.

Rapidity

In case of life-threatening snake bites with narrow antidose periods 
to save the patient’s life, rapid detection time is an essential pa-
rameter for sensor development. The response generation must be 
immediate for when the antibody interacts with a specific antigen 
in the sample. Ajeet et al.67 developed a biosensor with the aid of 
antibodies to detect the presence of ochratoxin, which is produced 
by Aspergillus species and found in foodstuffs. For this, the IgG 
antibodies are isolated and immobilized onto an indium tin oxide 
layer, with the help of chitosan and iron oxide composite. The elec-
trodes have a very fast response time (18 s), with greater sensitivity 
and a minimum detection limit of 0.5 ng dL−1. An attempt has been 
made to measure the concentrations of cortisol and corticotrophin-
releasing hormone by immobilizing the polyclonal antibodies on a 
platinum electrode. These probes are capable of giving a response 
within 30 s, with high sensitivity.68

Specificity

Although blood samples from bite regions have been exposed to a 
range of biosensors, accurate and specific results have only been 
obtained upon specific antibody-antigen interaction.69,70 The rest 
have shown negative results for suggesting proper treatment. The 

Fig. 3. The detailed procedure of antibody generation in the hen’s egg model, followed by the development of a venom-specific biosensor. 
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antibody-antigen reactions are very specific, even at very minute 
concentrations, and have been proven by various research groups 
to underlie the specificity of antibody-antigen reactions.71–73 The 
mouse immune globulin IgG is detected by using fluorophore-
modified antibodies. This approach has been demonstrated as very 
useful for the detection of various antigens in different disease 
conditions.74 A rapid detection-capable amperometric biosensor 
has been developed for Streptococcus agalactiae detection, and a 
biotinylated antibody is utilized for the application. The antibody 
is conjugated with horseradish peroxidase-labeled streptavidin and 
the complex is immobilized on the carbon electrode.75

Perspectives

The proposed hypothesis is a potential methodology for the rapid 
and accurate identification of a snake that has bitten a victim. The 
proposed design offers greater specificity, selectivity and accuracy, 
in comparison to the current existing conventional techniques. The 
proposed device will be reusable and cost-effective. The main ad-
vantage of this analysis will be bypassing sample preparation for 
analysis. The sensor will directly detect the analyte (venom) from 
the sample (blood collected from injury region or bloodstream). 
The device will be able to save the precious lives of many peo-
ple and to prevent the occurrence of adverse effects of nonspecific 
ASV administration.
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