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Introduction

Colorectal cancer (CRC) is one of the most common cancers and 
a leading cause of cancer-related death. The global annual inci-
dence of CRC is approximately 1.2 million, and the annual death 
toll reaches 600,000.1 CRC is characterized by a long preclinical 
phase, progressing over years from early adenoma to invasive 
cancer.2,3 Diagnosis of early-stage CRC can significantly improve 
patient prognosis, with a survival rate higher than 80%,4 which 
makes early diagnosis of CRC more critical for better patient out-
comes.

Screening methods for CRC, including fecal occult blood test 
(referred to as FOBT), colonoscopy, determination of genetic 
mutation and gut microbiota tests, have received widespread at-
tention; although, these methods significantly differ in specificity, 
accuracy, convenience, and universality with regard to clinical di-

agnosis. Colonoscopy, the gold standard for the diagnosis of CRC, 
can facilitate early prevention through adenoma resection; how-
ever, it is an invasive endoscopy, which causes patient discomfort 
and reduces their compliance to clinical examinations, relies on 
endoscopist skill, and requires patient bowel cleansing.5,6 The tra-
ditional guaiac-based FOBT, which is inexpensive and noninva-
sive, is the first-choice screening test for CRC. Both guaiac-based 
FOBT and fecal immunochemical test (FIT) can improve the pos-
itive rate of diagnosis by repeated detection over a long period 
of time. However, cancer bleeding is usually intermittent, which 
leads to lower sensitivity, specificity, and false-negative results 
with these two tests.7 As the abovementioned methods have many 
limitations, it is necessary to establish novel screening methods 
that are accurate, inexpensive, and noninvasive.

The human microbiota is a very large and complex microbial 
system. Gut microbiota includes bacteria, viruses, archaea, and 
fungi, but the main component is bacteria; thus, most studies of the 
microbiota focus on bacteria, as it is composed of approximately 
1014 bacteria, which equates to 10 times the total number of hu-
man cells.8 The gut microbiota contains nearly 11,500 common 
bacteria.9 The total number of bacterial genes in the gut microbiota 
is 150 times the total number of human genes.10–12 Coincidentally, 
the gut microbiota has been called a “forgotten organ”.10–12

Dysbacteriosis plays an important role in the pathogenesis of 
several diseases. For example, the gut microbiota is associated 
with many diseases, such as obesity, type 2 diabetes, and athero-
sclerosis.13–17 Moreover, it is well-known that genomic alterations 
of the APC/Wnt pathway can potentially lead to carcinoma.18 Re-
cent studies have increasingly indicated that the gut microbiota is 
closely related to CRC,19 with many differences in gut microbiota 
between healthy people and patients with CRC. Studies have also 
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shown that biomarkers from gut microbiota may be used for the 
diagnosis of CRC.20–23 This review focuses on the relationship 
between gut microbiota and CRC as well as the possibility that 
gut microbiota related markers may be novel biological screening 
markers for CRC.

Random forest model

Gut microbiota can be used as a marker to screen for CRC, but 
the screening capacity of a single flora is limited, and multibacte-
rial models are needed to increase the screening capacity. If too 
many bacterial species are present, this model will be difficult to 
apply in the clinical setting; therefore, we need to screen for the 
most discriminating bacteria. As an integrated machine-learning 
algorithm, random forest (RF) is a classifier with multiple decision 
trees that are established through randomly repeated sampling, and 
a final voting result is obtained.24 The current classifier algorithms 
mainly include, Bayes net, simple logistic, TB-line (TB pedigree), 
machine learning, sequential minimum optimization algorithm for 
support vector, and RF.25–32

In many applications, the RF algorithm, by far, has the best ac-
curacy. Moreover, compared to other technologies, RF has many 
advantages, such as anti-interference, simple optimization, and ef-
ficient parallel processing, in processing highly nonlinear biologi-
cal data.33,34 The RF model considers the interaction between non-
linear data and characteristics of the model, and can also carry out 
internal cross-validation within the model to prevent overfitting.35 
A recent article reported that an RF model successfully screened 
microbial markers for early cirrhotic liver cancer.36 Another study 
on hepatocellular carcinoma used the same method to obtain pre-
dictive biomarkers for advanced hepatocellular carcinoma.37 An 
RF model based on intestinal gut microbiota was established to 
successfully predict the variation of Bifidobacteria after probiotic 
treatment, and it revealed the effects of probiotics on intestinal 
flora.38 Thus, RF models, as a superior machine-learning model, 
are increasingly used in research for the selection of biomarkers. 
Therefore, we reviewed the recent progress in the diagnosis of 
colorectal diseases by using an RF model based on gut microbiota 
as well as the selection of possible predictive markers of colorectal 
diseases.

Dysbiosis of gut microbiota in CRC

The gut microbiota and its hosts coparticipate in the establish-
ment of a symbiotic relationship to maintain homeostasis in the 
digestive system. In healthy individuals, at the phyla level, the 
Firmicutes and Bacteroidetes phyla are predominant in the gut 
microbiota, despite remarkable interindividual differences.39 At 
the genus level, a meta-analysis indicated that a high abundance 
of the genera Barnesiella, Ruminococcaceae UCG-005, Alistipes, 
Christensenellaceae R-7 group, and an unclassified member of the 
Lachnospiraceae family correlated with the healthy state in their 
subjects.40 However, the most abundant bacterial genera in the gut 
microbiota include Prevotella, Bacteroides, and Ruminococcus. 
Based on genus compositional variations, the gut microbiota could 
be classified into different enterotypes, namely the Prevotella pre-
dominant enterotype, Bacteroides predominant, and Ruminococ-
cus-related enterotype, respectively. Simultaneously, this research 
shows that the human intestinal microbiota has commonalities.41

As usual, the features of bacterial populations are specified by 
tissue, colonic lumen, and feces, which themselves have different 

cellular and physiologic features. In the proximal colon, Bacte-
roides, Actinomyces, Pseudomonas, and Enterobacteriaceae show 
differential abundance between the lumen and mucosa.42 Simi-
larly, Enterobacteriaceae, Bacteroides, and Pseudomonas enrich 
the proximal colonic mucosa, whereas there is increased relative 
abundance of Finegoldia, Murdochiella, Peptoniphilus, Porphy-
romonas, and Anaerococcus in the distal colon.42 The abundance 
of Turicibacter, Finegoldia, Peptoniphilus, and Anaerococcus was 
found to be different between the lumen and mucosa microbiota 
in the distal colon.42 Furthermore, there are differences in the mi-
crobiota compositions between different anatomical parts of the 
colon.42

Colorectal adenoma (CRA) confers a high risk for the develop-
ment of CRC but the gut microbiota is necessary for the formation 
of intestinal adenoma, and healthy gut microbiota are associated 
with a reduced risk of advanced CRA.43 In cases of CRA, the rela-
tive abundance of two bacterial genera (Enterococcus and Strep-
tococcus) increased, whereas that of three genera (Clostridium, 
Roseburia, and Eubacterium) decreased.44 Another study found 
that some species belonging to Ruminococcaceae, Clostridium, 
Pseudomonas, and Porphyromonadaceae showed increased 
numbers in patients with CRA, whereas other species belonging 
to Bacteroides, Lachnospiraceae, Clostridiales, and Clostridium 
decreased.20 Analyses of fecal microbiota from 95 patients with 
CRA revealed substantial changes in the microbiota compositions. 
In CRA, the Proteobacteria phylum was found to have enriched 
the microbiota. These bacteria are associated with precancerous 
lesions.45 Lachnospiraceae, a potentially beneficial bacteria genus, 
was depleted, and the relative abundance of this genus had high 
accuracy in differentiating patients with CRA from normal indi-
viduals.23,46

Dysbiosis of the gut microbiota and its substantial composition-
al alterations are closely related to the development of CRC.47 The 
microbial communities in tumor microhabitat are different from 
those in tumor-adjacent healthy tissue.48 Moreover, antibiotic in-
tervention in the microbiota can significantly reduce the burden 
of colonic tumors.19 Virulence-associated genes in tumors may 
potentially depend upon the genomes Fusobacterium and Provi-
dencia.48 A study on fecal microbiota from 120 patients with CRC 
showed the increased abundance of a number of species, includ-
ing Pophyromonas assaccharolytica, Fusobacterium nucleatum, 
Parvimonas micra, Peptostreptococcus stomatis, Gemella spp., 
and Prevotella spp.23 Furthermore, in a mouse model of CRC, the 
abundance of Lactobacillus negatively correlated with the num-
ber of colonic tumors.49 Moreover, fecal microbiota from patients 
with CRC can promote tumorigenesis in both germ-free mice and 
conventional mice.50 Taking these findings together, it appears that 
some cancer-associated bacteria in gut microbiota can serve as bio-
markers to detect CRC.

RF model for identification of microbial biomarkers for CRC

Alterations in the relative abundance of bacteria in CRC indicate 
they are potential predictive or diagnostic biomarkers for CRC or 
CRA. Escherichia coli, Bacteroides fragilis, and Fusobacterium 
nucleatum have been shown to directly influence tumor develop-
ment in the colon.19 A recent small-sample study on the quantifi-
cation of this bacterium in fecal samples found a great increase 
in the number of these bacteria in CRC; the conclusive findings 
of the study supported the use of Fusobacterium nucleatum as 
biomarker of CRC as well as a marker of early CRC.51–53 The su-
pernatant of a Fusobacterium nucleatum culture exhibited strong 
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bactericidal activity against some probiotics, such as Faecalibac-
terium prausnitzii and Bifidobacterium strains, that may cause 
disease.54

A study found a stepwise increase in the abundance of 
Clostridium from normal tissues to adenoma and, finally, colonic 
cancer.55 Therefore, Clostridium symbiosum can be used singly as 
a biomarker for detecting CRC. The results showed that a stepped 
increase in Clostridium abundance outperformed all other con-
ventional screening methods, such as carcinoembryonic antigen 
(referred to as CEA) and FIT, both of which were known to have 
greater sensitivity (area under the curve (AUC) = 0.73 vs. 0.38–
0.54 for other methods). In combination with FIT, the predicting 
accuracy of Clostridium symbiosum increased significantly, with 
an AUC of 0.803. Moreover, with the combination of Clostridium 
symbiosum and Fusobacterium nucleatum, FIT (200 ng/mL) and 
CEA (3.3 ng/mL) achieved a performance an AUC of 0.876.55

A meta-analysis of a publicly available dataset showed that the 
depletion of Faecalibacterium, Bacteroides, and Romboutsis could 
be a potential biomarker for CRC.52 A Chinese study supported the 
identification of CRC and differentiation from the healthy group via 
76 fecal potential biomarkers; the CRC group was enriched with 
18 operational taxonomic units (OTUs); moreover, fecal metabo-
lites in healthy patients and cancer groups are different.56 Another 
meta-analysis of eight studies from different countries and regions 
identified 29 species as biomarkers of CRC.57 Furthermore, the mi-
crobial species can predict taxonomic and functional microbiome 
CRC signatures as a basis for future diagnostics. (These data are 
summarized in Table 1.)49,52–55,57–59

There have been attempts to explore whether a combination of 
bacterial markers could increase the AUC value in predicting CRC. 
Zackular et al.20 analyzed fecal microbiota from healthy subjects 
and patients with CRA or CRC; they found substantial alterations 
in the gut microbiome of patients with CRA or CRC compared to 
healthy controls, with a classification accuracy for CRC of 0.798 
AUC. Therefore, combining microbial markers with known clini-
cal risk factors can significantly improve the differentiation ability 
of the tests.21

By using a LASSO logistic regression classifier, a model con-
structed with fecal microbiota could predict CRC with an accura-
cy of 0.82.22 Another study from China demonstrated that a model 
constructed with microbiota showed better value than FOBT.60 
Sze et al.49 constructed an RF classification model using 8 taxa 
based on significant odds ratios obtained in a meta-analysis of 
14 studies from various geographical regions. Their analysis in-
cluded 1,737 fecal samples and 492 tissue samples. These encom-
passed Fusobacterium, Parvimonas, Porphyromonas, Peptostrep-
tococcus, Clostridium XI, Enterobacteriaceae, Ruminococcus, 
and Escherichia. The combined model had an AUC of 0.75 based 
on fecal samples. Similarly, the AUC was 0.77 in tissue samples 
used in a combined model trained by Dorea, Blautia, and Weis-
sella.49 Their model could successfully classify CRC with high 
accuracy when models trained using one data set were tested on 
other data sets.49

Nonetheless, a test that objectively reflects the early gut changes 
in CRA or CRC fully is needed. New noninvasive screening meth-
ods are needed to increase the sensitivity and specificity for CRC 
detection. Baxter et al.23 established an RF classification model by 
using the relative abundance of gut microbiota and FIT from stool 
samples of 490 patients. They observed that the sensitivity and speci-
ficity of a combination model of bacterial abundance and FIT, which 
they obtained by incorporating data on hemoglobin concentration 
(determined by FIT), and bacterial relative abundances (multitarget 
microbiota test) for CRC and CRA were better than those with FIT 
alone.23 Their model used 23 OTUs, including Lachnospiraceae 

(OTU87), Lachnospiraceae (OTU60), Lachnospiraceae (OTU32), 
Lachnospiraceae (OTU88), Lachnospiraceae (OTU44), Lachno-
spiraceae (OTU14), Bacteroides (OTU7), Bacteroides (OTU3), Bac-
teroides (OTU2), Ruminococcus (OTU11), Ruminococcus (OTU16), 
Ruminococcaceae (OTU29), Blautia (OTU13), Blautia (OTU9), 
Collinsella (OTU19), Firmicutes (OTU282), Enterobacteriaceae 
(OTU28), Parabacteroides (OTU49), Roseburia (OTU5), Clostridi-
ales (OTU10), Faecalibacterium (OTU6), Anaerostipes (OTU8), 
Porphyromonas (OTU105), and FIT with a 100 ng/mL cutoff. We 
infer that 16 of these were members of the Firmicutes phylum.23 The 
multitarget microbiota test detected 91.7% of cancers and 45.5% of 
adenomas, compared to 75.0% and 15.7% by FIT, respectively.23 
Thus, screening methods for colorectal lesions need to be continu-
ally optimized to find the optimal screening program.

A recent study analyzed a total of 969 fecal mate genomes, in-
cluding 5 publicly available data sets, 2 new cohorts, and 2 valida-
tion cohorts.58 Twenty-four species with high RF accuracy features 
were selected; these were: Actinomyces graevenitzii, Alistipes spp., 
Anaertuncus colihominis, Bifidobacterium longum, Clostridium 
hathewayi, Clostridium leptum, Clostridium symbiosum, Dialis-
ter invisus, Eubacterium eligens, Escherichia coli, Fusobacterium 
nuleatum, Gemella morbillorum, Lachnospiaceae 3157FAA CT1, 
Lachnospiaceae 8157FAA, Lachnospiaceae5163FAA, Parvimonas 
spp., Peptostreptococcus stomatis, Porphyromonas assccharo-
lyica, Pravimonas micra, Prevotella copri, Ruminococcus gnavus, 
Subdoligranulum spp., Streptococcus parasanguinis, and Strepto-
coccus salivarius. The predictive microbiome signatures trained 
on different data sets consistently showed high accuracy. Nonethe-
less, it appears their model has lower sensitivity and specificity 
values for predicting CRA.58

Despite significant advances in the study of the effects of gut 
microbiota on colorectal lesions, few studies have investigated 
the gut microbiota after the treatment of patients with colorectal 
lesions. The tumor-node-metastasis (commonly known as TNM) 
international staging system has always been considered the gold 
standard to determine CRC prognosis. In addition, findings of ane-
uploidy, tumor-infiltrating lymphocytes, allelic loss in DCC, TP53, 
APC and MCC genes, TP53 gene mutations, CD44 protein expres-
sion, high levels of thymidylate synthetase, microsatellite instabili-
ty, and gene studies of both RAS and BRAF are independent, strong 
prognostic factors. In addition, C-reactive protein, overexpression 
of the CEA in tumors, and circulating free DNA are considered 
to be associated with the prognosis of patients with CRC.19 Ai et 
al.59 analyzed the composition of fecal microbiota in 124 samples 
from France and 99 samples from Austria. They excluded unre-
lated and redundant features during feature selection by mutual 
information, and trained an RF classifier on a large mate genomic 
data set of patients with CRC and healthy individuals. The RF clas-
sifier assembled from published reports as well as extracted and 
analyzed information from learned decision trees. Porphyromonas 
asaccharolytica, Peptostreptococcus stomatis, Fusobacterium, 
Parvimonas spp., Streptococcus vestibularis, and Flavonifractor 
plautii were determined to be key microbial species associated 
with CRCs.59

By using an RF model based on fecal microbiota, Sze et al.61 
found significant differences between the pre- and post-treatment 
samples of 67 individuals, including those with adenoma (n = 22), 
advanced adenoma (n = 19), and carcinoma (n = 26). Fusobac-
terium, Porphyromonas, and Parvimonas were significantly de-
creased in the post-treatment samples.61 Furthermore, in a mouse 
model, interventions of microbiota with antibiotics led to a dra-
matic decrease in the tumor burden in the colon.19 In addition, as 
an important probiotic, Bifidobacterium has been shown to enrich 
the gut microbiome in healthy individuals.61 Moreover, studies 
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Table 1.  Characteristics of the bacteria species as potential biomarkers for CRC

Phyla Genus Abundance Reference

Firmicutes Clostridiales Increased Xie YH (2017)55

Unknown Clostridiales Increased Wirbel J et al. (2019)57

Clostridium bolteae/clostridioforme Increased Wirbel J et al. (2019)57

Clostridium symbiosum Increased Wirbel J et al. (2019)57; Thomas AM et al. (2019)58

Clostridium leptum Increased Thomas AM et al. (2019)58

Clostridium hathewayi Increased Thomas AM et al. (2019)58

Unknown Clostridiales Increased Wirbel J et al. (2019)57

Subdoligranulum spp. Decreased Thomas AM et al. (2019)58

Unknown Peptostreptococcaceae Increased Wirbel J et al. (2019)57

Peptostreptococcus stomatis Increased Thomas AM et al. (2019)58; Ai D et al. (2019)59

Anaerococcusobesiensis/vaginalis Increased Wirbel J et al. (2019)57

Anaertuncus colihominis Increased Thomas AM et al. (2019)58

Gemella morbillorum Increased Wirbel J et al. (2019)57; Thomas AM et al. (2019)58

Unknown Dialister Increased Wirbel J et al. (2019)57

Hungatellahathewayi Increased Wirbel J et al. (2019)57

Parvimonas species Increased Wirbel J et al. (2019)57; Ai D et al. (2019)59

Parvimonas spp. Increased Thomas AM et al. (2019)58

Pravimonas micra Increased Thomas AM et al. (2019)58

Ruminococcus torques Increased Wirbel J et al. (2019)57

Ruminococcus gnavus Decreased Thomas AM et al. (2019)58

Uubdoligranulum species Increased Wirbel J et al. (2019)57

Lachnospiaceae 3157FAA CT1 Increased Thomas AM et al. (2019)58

Lachnospiaceae 8157FAA Decreased Thomas AM et al. (2019)58

Lachnospiaceae5163FAA Decreased Thomas AM et al. (2019)58

Alistipes spp. Decreased Sze MA et al. (2018)49

Dialister invisus Decreased Thomas AM et al. (2019)58

Eubacterium eligens Decreased Thomas AM et al. (2019)58

Streptococcus parasanguinis Increased Thomas AM et al. (2019)58

Streptococcus salivarius Decreased Thomas AM et al. (2019)58

Streptococcus vestibularis Increased Ai D et al. (2019)59

Bacteriodetes Bacteroides Decreased Mangifesta M et al. (2018)53

Unknown Porphyromonas Increased Wirbel J et al. (2019)57

Porphyromonas uenonis Increased Wirbel J et al. (2019)57

Porphyromonas somerae Increased Wirbel J et al. (2019)57

Porphyromonas asaccharolytica Increased Ai D et al. (2019)59; Thomas AM et al. (2019)58

Prevotella intermedia Increased Wirbel J et al. (2019)57

Prevotellan igrescens Increased Wirbel J et al. (2019)57

Prevotella copri Increased Thomas AM et al. (2019)58

Flavonifractor Increased Ai D et al. (2019)59

plautii

Proteobacteria Faecalibacterium Decreased Mangifesta M et al. (2018)53

Escherichia coli Increased Thomas AM et al. (2019)58
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have shown that Bifidobacterium can inhibit the growth of intes-
tinal carcinogenic bacteria and protect intestinal mucosa, which 
makes it an important probiotic for clinical application (Table 
2).20,23,42,44,45,49,59,61,62

The gut microbiota includes bacteria, viruses, and fungi. De-

spite the close relation of bacteria to colorectal lesions, gut mi-
crobes can interact with each other. Through RF modeling, Hanni-
gan et al.63 found that viruses indirectly affect cancer progression 
by altering bacterial host communities. Nakatsu et al.64 conducted 
a study on the survival prediction of CRC by viruses. Their study 

Table 2.  Important studies in dysbiosis of gut microbiota in CRC, bacterial features, detection methods and models

Participants Sample 
sources Models Bacteria, genus Bacteria 

features

Flynn et al. 
(2018)42

Healthy (n = 20) Mucosal, 
feces and 
luminal 
contents

Random forest 
classification 
models

Enterobacteriaceae, Bacteroides 
and Pseudomonas

Enriched in 
the proximal

Finegoldia, Murdochiella, Peptoniphilus, 
Porphyromonas and Anaerococcus

Colonic mucous 
increased in the 
distal colon

Chen et al. 
(2013)44

Healthy (n = 344), 
A-CRA groups (n = 344)

Feces NA Enterococcus and Streptococcus Increased 
in A-CRA;

Clostridium, Roseburia, and Eubacterium Decreased 
in A-CRA

Zackular et 
al. (2014)20

Healthy (n = 30), 
colonic adenoma (n 
= 30), and colonic 
adenocarcinoma 
(n = 30)

Feces NA Ruminococcaceae, Clostridium, 
Pseudomonas, and Porphyromonadaceae

Increase in 
CRA patients

Bacteroides, Lachnospiraceae, 
Clostridiales, and Clostridium

Decreased in 
CRA patients

Goedert et 
al. (2015)45

Normal patients (n 
= 24), CRA (n = 20), 
CRC (n = 2), and other 
conditions (n = 15)

Feces Random forest Proteobacteria Enriched in CRA

Ai D et al. 
(2019)59

France (n = 124); 
Austria (n = 99)

Feces Random forest Porphyromonas asaccharolytica, 
Eubacterium hallii, Parvimonas 
spp., Fusobacterium 7, Prevotella 
melaninogenica, Streptococcus vestibularis, 
Prevotellacopri, Peptostreptococcus 
stomatis, Fusobacterium nucleatum, 
Parvimonas micra, Gemella 
morbillorum, Flavonifractor plautii, 
Fusobacterium, Clostridium SS2

Enriched in CRC

Phyla Genus Abundance Reference

Fusobacteria Fusobacterium nucleatum Increased Tunsjø HS et al. (2019)52; Mangifesta M et al. 
(2018)53; Xie YH (2017)55; Bullman S et al. (2017)54; 
Thomas AM et al. (2019)58; Ai D et al. (2019)59

F. nucleatum subspecies animalis Increased Wirbel J et al. (2019)57

F. nucleatum subspecies nucleatum Increased Wirbel J et al. (2019)57

F. nucleatum subspecies vincentii Increased Wirbel J et al. (2019)57

Fusobacterium species 
oral taxon 370

Increased Wirbel J et al. (2019)57

Actinobacteria Actinomyces graevenitzii Increased Thomas AM et al. (2019)58

Bifidobacterium longum Decreased Thomas AM et al. (2019)58

Tenericutes Solobacterium moorei Increased Wirbel J et al. (2019)57

Table 1.  Characteristics of the bacteria species as potential biomarkers for CRC - (continued)
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found a combination of four classification markers that reduce 
patient survival in CRC.43 Further research on CRC-related viral 
group characteristics could lead to the development of new tools to 
identify individuals with CRC or to predict outcomes.

There are some limitations of our meta-analysis. Despite the 
available data on CRC detection through the gut microbiome, there 
is a lack of consensus on which features are most informative. 
The contradictory reports from some studies could be attributed 
to differences inherent among study populations, procedures for 
fecal collection and storage, DNA extraction and amplification, 
sequencing, and bioinformatics processing methods. Moreover, 
recent studies used their models only to differentiate CRC from 
CRA or healthy individuals. Further studies are required to identify 
methods that can differentiate CRC from other colonic diseases, 
such as inflammatory bowel diseases.

Future research directions

Our analysis of recent studies on CRC biomarkers and the list of 
related genera showed the absence of an accepted biomarker for 
CRC. The RF model has features of anti-interference, simple op-
timization and efficient parallel processing, all of which imply it 
may be the best choice for screening biomarkers. Future research 
to develop a kit to accurately screen for CRA and CRC biomark-
ers through an RF model for fecal microbiota could accurately, 
quickly and conveniently improve early detection of these condi-
tions.

Conclusion

In recent years, several studies have demonstrated that the gut mi-
crobiota in CRC patients differs substantially from that in healthy 
individuals. Fecal microbial markers have the potential to provide 
a noninvasive alternative method to diagnose CRC. RF models 
or other statistical models based on a collection of bacteria in the 
gut microbiota could help identify CRC with high accuracy. When 
combined with other conventional screening markers and clinical 
risk factors, the predictive accuracy for CRC increases dramati-
cally. The findings in our review provide a new approach to iden-
tify powerful biomarkers in the gut microbiota. This will facilitate 
clinician decision-making for early intervention in CRC.
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