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Abstract

Egypt has the highest prevalence of chronic hepatitis C virus
(HCV) infection and seropositivity worldwide, and it has been
proposed that this enhanced susceptibility to HCV is related to
coinfection with schistosomiasis. Although currently, there
are no studies regarding the actual prevalence of both human
schistosomiasis and schistosomiasis/HCV coinfection evi-
dences strongly support that eliminating human schistoso-
miasis from Egypt is necessary to reduce both HCV
prevalence and liver pathology. The present review highlights
the significant impact of the neglected tropical disease human
schistosomiasis on both susceptibility of Egyptians to HCV
coinfection, severity of the resulting liver pathology, and poor
response to antiviral therapy. The immune evasion mechan-
isms exerted by the HCV-NS3/4A protease domain, and the
possible impact of immune evasion mechanisms exerted by
proteases of larval, worm and egg stages of the parasite
Schistosoma on human susceptibility to HCV infection are
discussed. In addition, schistosome immune evasion
mechanisms may include immunosuppression that in turn
prevents clearance of HCV viremia and leads to relapsing HCV
infection and severe liver pathology. I propose the generation
of a replicon system from themost prevailing genotype (HCV-
4a) in Egypt and establishing its replication on hepatoplas-
toma or immune cells in presence of bilharzial antigens.
Finally, the use of a humanized small animal model that can
acquire both HCV and S. mansoni infections will be important
to further understand in real time the impact of coinfection on

both the immune system and liver pathology.

E 2014 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

Introduction

Helminth infections are one of the most common parasitic
diseases found in tropical countries worldwide.1 The highest
prevalence of such infections occur in underdeveloped
regions with poor hygiene and inadequate water supply and
sanitation. These populations often live on less than 2 US
dollars per day. Helminthic infections are the most neglected
of tropical diseases.1 Schistosomiasis, in particular, has been
endemic in Egypt and other African countries located along
the Nile River since antiquity.2 During the first half of the 20th
century, up to 80% of the residents in impoverished Egyptian
villages were infected with schistosome parasites, an incident
that made a writer at that time declare, ‘‘No other people on
earth suffer the consequences of bilharzial infection to the
extent of the Egyptian farmers’’.2 Risk factors for active
schistosomiasis transmission, including improper water and
sanitation facilities and bodies of stagnant water contami-
nated with infected intermediate snail hosts, existed in poor
Egyptian villages and dramatically contributed to the estab-
lishment of disease endemicity.2 Globally, chronic morbidities
associated with repeated schistosomiasis infection include
impaired child growth and development, chronic liver inflam-
mation, anemia, and other nutritional deficiencies. It has
been estimated that up to 56 million disability adjusted life
years are lost annually, a value that exceeds the estimated
global burden of malaria.3

Prior to the availability of oral praziquantel, the primary
treatment for schistosomiasis in Egypt was tartar emetic
(potassium antimony tartrate) administered parenterally.2

Hundreds of thousands of Egyptian farmers received the
medication following World War I, which was, although highly
toxic, often effective in curing schistosomiasis. The drug
exerted its action via inhibition of DNA synthesis,4 and side
effects included nausea, vomiting, coughing, acute circulatory
failure, and electrocardiographic changes.5 Unfortunately, this
drug was dispensed without due attention to sterilization of
needles between patients and resulted in an unanticipated
epidemic of hepatitis C virus (HCV) transmission.6–12 During
this period, human blood and multiple syringe use were
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not known as possible routes for transmission of other
infections.12 It has recently become evident that the parent-
eral administration of tartar emetic using non sterilized
syringes resulted in widespread transmission of both HCV
and HBV.13 Given the prevalence of schistosomiasis/HCV
coinfection in Egyptians, higher susceptibility of this popula-
tion was proposed.14,15 Two years ago, the prevalence of
chronic HCV infections and seropositivity among Egyptians
was reported to be one in 10 people, whereas the global rate
was one in 50 people.16 In contrast, the seroprevalence of HCV
and schistosomiasis in neighboring Sudan is much lower, and
the reason for this difference is still unclear.17

Over the last decade, most papers published regarding
human schistosomiasis began with a similar version of the
following paragraph: ‘‘Schistosomiasis is the second most
important parasitic infection after malaria and affects more
than 200 million people in 74 countries.18 It is endemic, with
high prevalence and morbidity rates in many countries,
especially those in Africa, such as Egypt,19 Kenya20 and
Sudan12,22 and in South America, mainly Brazil.23 The largest
epidemiological survey in Egypt mentioned the prevalence of
Schistosoma haematobium in Upper Egypt (where it is
endemic) to be around 7.8%, while the prevalence of S.
mansoni in Lower Egypt (where it is endemic) was found to be
around 36.4%.19 When one carefully looks at the dates of the
references for global prevalence of the human schistosomiasis,
it becomes apparent that all results are outdated and represent
more a history than a description of the current status.

The main reasons for this is that human schistosomiasis,
among other helminth infections, became an extremely
neglected tropical disease.1 During the 1990’s, the WHO,
the Egyptian Government in collaboration with the USAID,24

and the EU allocated large funds to establish relationships
between scientists from endemic countries for human schis-
tosomiasis and collaborators form Europe and the USA. These
funds were extremely useful in training young scientists and
establishing an infrastructure in Egypt that enabled labora-
tories to seriously begin research on the control of human
schistosomiasis. Unfortunately, the majority of the funds was
spent on characterizing vaccine candidates, an aim which is
to date still not achieved, and not on setting up concrete
hygienic plans to eliminate human schistosomiasis from
Egypt. Candidate schistosome antigens that were evaluated
for their protective potential against schistosomiasis infection
and their capacity to stimulate various host immune
responses are listed in table 1 (reviewed in 25).26–49 By the
end of the 1990’s, the funds expired, Western countries
excluded human schistosomiasis from their research prio-
rities, and Egypt declared schistosomiasis as a minor or no
longer existing health problem. The dramatic absence of both
international funding schemes and political willingness to help
contributed to an extreme neglect of human schistosomiasis
and other helminth, soil-, and mosquitoes-borne diseases in
Egypt over the last twenty years.

The early schistosomiasis tartar emetic control campaign
which resulted in HCV transmission8–13 led to the highest
prevalence rates globally of HCV in Egypt,17 with many cases
developing into chronic liver cirrhosis and hepatocellular
carcinoma (HCC). Schistosoma and HCV appear to act
synergistically in coinfected patients, causing more severe
liver disease progression compared to either pathogen
alone.50–60 Since praziquantel became the oral drug of choice
to control human schistosomiasis,61 no injectable drugs are
used for infection treatment. Nevertheless, HCV infection is

frequently complicated by underlying S. mansoni coinfection,
which has been associated with increased HCV morbidity and
chronicity.62–64

Taken together, these findings make clear that although
schistosomiasis is an extremely neglected tropical disease, it
has contributed significantly to the spread of, the suscept-
ibility to, and the pathological consequences of HCV infection.

The present review focuses on the immune evasion
mechanisms of both schistosome parasites and HCV that
might underlie the higher susceptibility of, and the severe
disease outcome in, coinfected Egyptian patients. Also high-
lighted the poor anti-viral therapy outcome among coinfected
subjects and proposed several future strategies that may
help in resolving the puzzling relationship between human
schistosomiasis and HCV infection.

Helminth infections switch immune response to favor
secondary viral infection

Helminth infections exert profound suppressive effects on the
host’s immune response, which enable their worms to evade
the defense mechanisms and survive in the blood, lymphatics,
intestine, body cavities, or other tissues for years.65–67

Chronically infected filarial and schistosome patients present
clinically with impaired immune responses, as demonstrated
by reduced production of IL-5 and IFN-c, and occasionally IL-
4.68–71 Although some elements of such immune suppression
are reversible upon drug-mediated parasite clearance,70–72

drug treatments do not induce protective immunity against
parasite challenge, and individuals can rapidly become re-
infected upon re-exposure to the infective stages of these
parasites. Therefore, innovative strategies to induce long-
term protective immunity and to develop vaccines against
helminth infections which can counteract infection-induced
immune suppression are still lacking. Recently, serum CCL11
and CCL17 were identified as serological indicators of human
multiple helminth infections. They were determined to be
primarily driven by S. mansoni infection as these biomarkers
significantly correlated with fecal bilharzia egg counts and
bilharzial induced IL10.73 Besides modulation of the immune
response, helminth infections cause chronic disease, including
fatigue, iron deficiency anemia, growth stunting, malnutrition,
and poor cognitive development.74 Both the immune suppres-
sive effects and the severe pathological consequences result-
ing from chronic helminth infections represent risk factors that
increase host predisposition to secondary viral infections.

Schistosomiasis infection induces TH2 responses that
enhance both susceptibility to HCV infection and
progression of liver pathology

One possible reason for both enhanced susceptibility to HCV
infection and liver pathology is the shift in the immune
response and corresponding cytokine release. While mount-
ing a successful immune response against HCV infection
would be characterized by a TH1 immunological profile that
triggers a robust antiviral response and a reduction in host
fibrosis, schistosomiasis triggers a TH2 cytokine response,
which not only suppresses TH1 cytokine release (thereby
hindering cellular and antiviral immunity) but also promotes
subsequent TH2 responses and fibrogenesis.15,52,54,75–79

Such suppression of TH1 cytokines in case of S. mansoni/
HCV coinfection was reported to be mediated by antigens
shed from dead parasite worms or eggs, and therefore did not
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require an active parasitic infection.34 The shift in immune
response from TH1 to TH2 can be confirmed by high plasma
levels of the profibrotic cytokines IL-4 and IL-13 and anti-
inflammatory cytokine IL-10.75–77,80–84

Consistent with this, it was reported that impaired
interferon gamma (INF- c) and tumor necrosis factor alpha
(TNF- a) production as well as impaired maturation of
dendritic cells in a HCV patient who underwent liver trans-
plantation resulted in an inadequate immune response to
viral progression and caused relapsing HCV infection.85 In
addition, induction of T- cells from infected humans with
human T cell lymphotropic virus type 1 by three recombinant
schistosome antigens, namely Sm29, ShTSP2 (tetraspanin),
and PIII, caused downregulation of IFN- c production, which
in turn enhanced virus propagation.86 Similarly, T-cell
responses in blood from positive Egyptian patients for both
anti-HCV and anti-Schistosoma antibodies showed a signifi-
cant decrease in core-specific T-cell IFN- c, IL-4, and IL-10

responses compared to T-cells in blood from Egyptian
patients positive only for anti-HCV antibodies.56,76 The
authors concluded that the presence of S. mansoni eggs in
the liver inhibited local intrahepatic T-cell responses against
HCV infection and consequently promoted persistent viral
infection and accelerated the clinical course of HCV in HCV/S.
mansoni coinfected humans. This could at that time provide a
possible explanation for why coinfected patients have a
higher incidence of cirrhosis and HCC than those matched
for age, disease duration, and viral genotype with chronic
HCV mono-infection.53

Immune evasion mechanisms by both HCV and S.
mansoni proteases enhance relapsing HCV infection
and severe liver pathology

Although escape from adaptive immunity is a key to long
term persistence of HCV infection, evasion of innate antiviral

Table 1. Candidate schistosome antigens, their capacity to stimulate various host immune responses, and their protective potential against
schistosomiasis infection

Antigen Form
Induced immune
response

Reduction of
egg count (%)

Reduction of
worm count (%) References

Sm-p80 DNA vaccine Th1, IgG, IgG2a and
IgG2b

84 59 26

TSP-2 Recombinant protein IgG, IgG1 and IgG2a ,65 57 27,28

Sm29 Recombinant protein Th1, IgG, IgG1 and
IgG2a

60 51 29,30

Sm200 (ECL) DNA vaccine IgG, IgG1. IgG2a ND 38.1 13

Sm 25 Peptide vaccine IgG Significant Significant 32,33

Glutathione peroxidase DNA prime vaccinia
virus boost

ND ND 85 34

Sm21.7 Recombinant protein ND ND 41–70 35

Cu/Zn superoxide
dismutase

DNA vaccine ND ND 44–60 34

Filamin DNA vaccine Th1/2, IgG, IgG1,
2a and 2b

ND 44–57 36

Sm fimbrin + Sm 21.7 Multivalent DNA
vaccine

IgG 41.5 (Liver) 55.6
(Intestine)

56 37

Sm-p80 DNA vaccine Th1/Th17, IgG ND 47 38

Sm 23 DNA vaccine IgG ND 44 39,40

Sm 21.7 DNA vaccine IgG 62 (liver) 67
(intestine)

41.53 41

Fimbrin Recombinant protein ND ND 39.4–41.6 42

Sm 22.6 Recombinant protein Th1/Th2, IgG, IgG1
IgG2a

ND 34.5 43

TSP-1 Recombinant protein IgG, IgG1 and IgG2a 52 (liver) 69
(feces)

34 26,27

Stomatin like protein-2 Recombinant protein Th1 IgG, IgG1
. IgG2a

No significant
difference

30–32 44

Sm 20.8 DNA vaccine ND ND 28.5–30.8 45

Sm28GST DNA vaccine +plasmid
containing IL-18

Th1, IgG 29.6% (liver)
27.5% (intestine)

22.6 46

Dif 5 DNA vaccine ND ND 22 47

SmIg Recombinant protein Th1/Th2, IgG ND No significant difference 48

Sm21.6 Recombinant protein Th1/Th2b IgG,
IgG1 . IgG2

ND No significant difference 49
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responses is crucial in establishing a persistent infection in
the first place.87 As a main player in innate immunity against
viruses, the IFN system is key in curtailing pathogens by
putting infected and neighboring cells into an antiviral
state.88 HCV has been known for long time to be highly
sensitive to treatment with type I IFNs,89,90 and to date, IFN-
a is the major component of HCV therapy. Since HCV is
sensitive to IFN and can still manage to establish persistent
infection, this suggests that the virus may have evolved
mechanisms to circumvent the innate antiviral defense
system. In fact, the viral serine protease domain, nonstruc-
tural protein (NS) 3/4A, was found to suppress activation of
IFN regulatory factor 3 (IRF-3), a central antiviral transcrip-
tion factor promoting the production of IFN-b and a plethora
of IFN-stimulated genes (ISGs), most prominently ISG56,91

in response to viral infection or treatment with double-
stranded ribonucleic acid.87,92

Further identification of cellular targets of the HCV protease
indicated that it interferes with both Toll-like receptor 3
(TLR3)–mediated signaling through cleavage of the essential
adaptor TRIF (Toll/interleukin receptor domain containing
adapter-inducing interferon b)93,94, mitochondrial antiviral
signaling protein95 and TLR-independent activation of IRF-3
by the cytosolic pathways of retinoic-acid inducible gene I
(RIG-I) and MDA5 (melanoma differentiation associated
protein 5) by inactivating the signaling adaptor CARDIF (also
known as interferon-beta promoter stimulator 1 [IPS-1],
mitochondrial anti-viral signaling protein [MAVS] and/or
virus-induced signaling adaptor [VISA]).96 This indicated that
both pathways may play a role in controlling HCV infection,
most likely, in different sets of cells because TLR3 was shown
to be essential for IFN production in plasmacytoid dendritic
cells, whereas RIG-I triggers IFN secretion upon viral infection
in conventional dendritic cells and other tissues.97 More
recently, the preferential abrogation of the RIG-I-mediated
pathway following proteolytic cleavage of CARDIF by the HCV
NS3/4A protease ectopically expressed in human primary
hepatocytes was reported. The TLR3-mediated pathway was
affected to a lesser extent and in a protease-independent
manner.98 In support of the impairment of innate anti-HCV
responses, IRF3-dependent genes, type IFN-b, type III IL28A/
IL29 and chemokine CCL5 were significantly downregulated in
association with a global decrease of CARDIF adaptor in liver
biopsies and corresponding purified hepatocytes of chronic
HCV patients.99 Altogether, these data suggest that HCV- NS3/
4A protease is an attractive anti-HCV drug target, and there-
fore, I and others molecularly characterized this protease and
reported on selective serine protease inhibitors as potential
anti-HCV therapeutics.90,100–103

A variety of proteases of various classes and clades were
also reported to be differentially expressed in various
developmental stages of the schistosome parasites.104–110

These were also demonstrated to be implicated in the evasion
of the host immune mechanisms for the sake of establishing
chronic bilharzial infection. Cercarial and schistosomular
proteases were reported for their capacity to cleave both
complement molecules111–115 and immunoglobulin E116,117

and in this way prevented host mediated parasite killing by
such molecules. Furthermore, helminth cysteine proteases
were recently reported to inhibit TRIF-dependent activation
of macrophages via degradation of TLR3, which represents an
additional immune evasion mechanism by parasite worms.118

In murine systems, inhibition of schistosome proteases
using either specific inhibitors,119 newly synthesized small

organic molecules120,121 or by inducing specific immunity
against DNA constructs encoding worm proteases122 resulted
in partial protection against S. mansoni infection as demon-
strated by either reduction in worm burden or egg counts.

Response of HCV/schistosoma coinfected patients to
IFN- a therapy

Treatment of HCV with pegylated interferon and ribavirin
represents the cornerstone and the standard of care for the
management of the prevailing HCV genotype 4a (HCV-4a) in
Egypt.123 HCV-4a has been reported to be one of the most
difficult genotypes to treat.123 One possible reason for this is
the great diversity of virus quasi species present in each
patient, which provides a reservoir of mutations that enable
virus-escape from anti-viral therapy.124,125 A very recent
study conducted on Egyptian patients clearly demonstrated a
significant association between positive serology for schisto-
somal infection and failure to HCV treatment despite anti-
schistosomal therapy with praziquantel.126 This further sup-
ports that bilharzial infection complicates HCV disease
progression and treatment.

Conclusions

The lack of recent data regarding the actual prevalence of
both human schistosomiasis and schistosomiasis/HCV coin-
fection clearly highlights the urgent need for active surveil-
lance studies for both pathogens in Egypt. I believe that
eliminating human schistosomiasis will significantly contri-
bute to the reduction of both HCV prevalence and liver
pathology among Egyptians and, as proposed by others,
advocate plans for the elimination of human schistosome
parasites from Egypt.127,128 The present review highlights the
significant impact of the neglected tropical disease human
schistosomiasis on both susceptibility of Egyptian patients to
HCV coinfection, severity of the resulting liver pathology, and
poor response to antiviral therapy. In addition to the exerted
immune evasion mechanisms by the HCV-NS3/4A protease, I
discuss for the first time the possible impact of immune
evasion mechanisms exerted by proteases of larval, worm,
and egg stages of the parasite Schistosoma on human
susceptibility to HCV infection. In addition, schistosome
immune evasion mechanisms are among the suppressive
tactics of the parasite that prevents clearance of HCV viremia
and leads to both relapsing HCV infection and severe liver
pathology.

In fact, developing in vitro and in vivo models would
enable the study of the impact of HCV-4a alone or in
combination with live schistosome stages (schistosomula,
worms and eggs) on liver pathogenesis and immune modula-
tion. The in vitro system requires generation of a replicon
system129 from the most prevailing genotype (HCV-4a) in
Egypt and establishment of its replication on hepatoplastoma
or immune cells in presence of bilharzial antigens.60 The ideal
in vivo system would be a humanized small animal model that
can acquire both HCV and S. mansoni infections in order to
study the impact of coinfection on both the immune system
and liver pathology in real-time.130,131

Last but not least, both international collaborative and
funding initiatives are needed to help resolve the puzzling
relationship between human schistosomiasis and HCV
infections.
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