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Abstract

Hepatitis A virus (HAV) infection is a major cause of acute
hepatitis and occasionally leads to acute liver failure in both
developing and developed countries. Although effective vac-
cines for HAV are available, the development of new antivirals
against HAV may be important for the control of HAV infection
in developed countries where no universal vaccination pro-
gram against HAV exists, such as Japan. There are two forms
of antiviral agents against HAV: direct-acting antivirals
(DAAs) and host-targeting agents (HTAs). Studies using small
interfering ribonucleic acid (siRNA) have suggested that the
HAV internal ribosomal entry site (IRES) is an attractive
target for the control of HAV replication and infection. Among
the HTAs, amantadine and interferon-lambda 1 (IL-29) inhibit
HAV IRES-mediated translation and HAV replication. Janus
kinase (JAK) inhibitors inhibit La protein expression, HAV
IRES activity, and HAV replication. Based on this review, both
DAAs and HTAs may be needed to control effectively HAV
infection, and their use should continue to be explored.
© 2015 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

Introduction

Hepatitis A virus (HAV) infections remain a major cause of
acute hepatitis and occasionally lead to acute liver failure
(ALF).1 Liver transplants are occasionally used in the
treatment of HAV-associated ALF.2 Acute kidney injury,3,4

hemophagocytic syndrome,5 and pure red cell aplasia6 have

been associated with HAV infection. HAV is usually transmit-
ted by the fecal-oral route, and it was found that the preva-
lence of HAV infection decreased with the improvement of
sanitation conditions in developed countries.7

Despite the successful results of childhood hepatitis A
vaccination programs in the United States, the mean age at
death among decedents with HAV infection increased to 76.2
years in 2011.7 HAV-related mortality declined, however,
suggesting that older patients are more susceptible to HAV
infection and more severely affected.7,8

In Japan, no universal vaccination program against HAV
exists, and only 14% of indigenous Japanese people have
received anti-HAV vaccinations.9 The positive rate of
anti-HAV in patients under 30 years (0-7%) was found to be
lower than those over 50 years (33%) in the indigenous
Japanese population.9 Therefore, the possibility of an out-
break of an HAV epidemic exists.10,11 A similar situation
exists in South Korea.12 Although there are safe and effective
vaccines against HAV, it is also important to discover new host
cell targets and to develop potential drugs for the treatment
of HAV.13–15

HAV internal ribosomal entry-site (IRES)-mediated
translation and replication

HAV is a member of the Hepatovirus genus of the Picornavir-
idae family. There are at least six genotypes of HAV, and three
of them (I to III) are of human origin.16,17 HAV is a positive
single-stranded, nonenveloped ribonucleic acid (RNA) virus of
;7,500 bases in length. The HAV genome codes one open
reading frame that encodes structural (viral protein (VP)4,
VP2, VP3, and VP1) and nonstructural proteins (2A, 2B, 2C,
3A, 3B, 3C, and 3D) and is flanked by a 5′ untranslated region
(UTR) and a 3′ UTR. The HAV genome is translated into a
single polyprotein in a cap-independent manner, i.e. HAV
exhibits IRES-mediated translation. Subsequently, the
single HAV polyprotein is proteolytically processed by pro-
tease 3C and cellular protease(s) into several functional and
mature proteins.13,18,19 HAV IRES-mediated translation and
HAV RNA replication are important for HAV virion formation
(Fig. 1). HAV 3D is the RNA-dependent RNA polymerase.18,19

In fact, HAV IRES and HAV 3C are attractive targets of anti-
viral drugs against HAV.

Antivirals against HAV (Table 1, Fig. 2)

Two forms of antiviral agents against HAV exist: direct-acting
antivirals (DAAs) and host-targeting agents (HTAs). DAAs
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specifically target HAV and include protease inhibitors, a
polymerase inhibitor, and IRES inhibitors. DAAs have none
of the adverse events associated with interferon, such as flu-
like syndrome, hematologic effects, or depression. However,
studies of human immunodeficiency virus (HIV) and hepatitis
C virus (HCV) suggest that several DAAs exhibit genotype-
specific antiviral activities with low genetic barriers to resist-
ance.20–22 HTAs have high genetic barriers to resistance and
exhibit pan-genotypic antiviral activities. HTAs have mecha-
nisms of action that are complementary to those of DAAs, and
HTAs typically act in a synergistic manner with DAAs.23 In
order to effectively control HAV, it is important to develop
both DAAs and HTAs.

DAAs against HAV

HAV 3C protease inhibitors

HAV 3C proteinases play an important role in the processing
of the HAV polyprotein. Inhibitors of HAV 3C can result in
the suppression of HAV replication, and there are several
reports available regarding inhibition of HAV 3C.24–34 The
binding of the peptide aldehyde Ac-Leu-Ala-Ala-(N,N-
dimethyl-glutaminal) to the HAV 3C proteinase leads to

Fig. 1. The life cycle of the hepatitis A virus (HAV). HAVcr-1, HAV cellular receptor 1; IRES, internal ribosomal entry-site; UTR, untranslated region.

Table 1. Effective antiviral agents against hepatitis A virus (HAV)

Direct-acting antivirals
(DAAs) Host-targeting agents (HTAs)

HAV 3C cysteine protease
inhibitors24–35

Broad-target HTAs

- Interferon-alpha45,46

Small interfering RNAs
against HAV18,40,42

Interferon-gamma52

Targets: 2C, 3C and IRES Interferon-lambda 1
(IL-29)*53

- Ribavirin58–60

- Amantadine58–64

- More precisely targeted
HTAs

- Agents against key host
enzymes14

- Agents against key cellular
factors

- Target: La*15,65

*Suppression of HAV internal ribosomal entry-site (IRES).
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reversible and slow-binding inhibition of HAV 3C.24 A peptidyl
monofluoromethyl ketone (peptidyl-FMK) inhibitor analogous
to the peptide aldehyde has the ability to suppress HAV poly-
protein processing and HAV replication.25 HAV replication is
reduced 25-fold in the presence of 5 µM peptidyl-FMK in sub-
clone 11-1 fetal rhesus monkey kidney cells (FRhK-4-cells) at
day 1 postinfection.25,35 Beta-lactones also represent a new
class of cysteine proteinase inhibitors that act on HAV 3C cys-
teine proteinases.28,31 Blaum et al.34 identified the hexanu-
cleotide 5′-GGGGGT-3′ (G(5)T) as an HAV 3C protease
inhibitor and reported that the sequence-specific small
nucleic acid-protein interaction mediated by this hexanucleo-
tide may suppress HAV replication. Thus, an HAV 3C protease
inhibitor is an attractive DAA.

HAV-specific small interfering RNAs (siRNAs)

In general, siRNAs can specifically knockdown target genes
and have significantly affected biological and pharmacological
research.36 Gene knockdown is achieved using ;21 nucleo-
tide double-stranded RNA (dsRNA) intermediates that are
known as siRNAs, and they do not activate the interferon sig-
naling pathway. Such siRNAs prevent a target gene from pro-
ducing its functional protein.37 RNA interference (RNAi) may
effectively treat viral infection with or without traditional anti-
viral therapies, although delivery of siRNAs to target cells is
difficult.38,39

Initially, we made and examined the effects of several
siRNAs that targeted HAV nonstructural protein-coding
regions related to HAV replicon replication.18,40 Our studies
revealed that siRNAs against the HAV 2C- and 3D-coding
regions inhibited HAV 2C and HAV 3D expression and that
the combination of 2C-siRNAs and 3D-siRNAs strongly in-
hibited HAV replication.40 Although consecutive siRNA applica-
tions select mutants that either preexist as quasispecies of the
HAV genome or are generated during genome replication in
HAV infection, consecutive siRNA transfections targetingmulti-
ple sequences in the HAV genome may result in a more effi-
cient and sustained silencing effect than a single transfection.41

HAV-specific siRNAs suppress HAV IRES-mediated
translation and HAV replication

We showed that various siRNAs that target the HAV IRES
suppressed HAV IRES-mediated translation and HAV
replication.42 RNase III (endoribonuclease)-prepared siRNAs
(esiRNAs) that are targeted to various domains of the HAV
IRES efficiently suppressed replication-competent HAV

replicon replication to 42% (0.5 µg/mL esiRNA) and 12%
(1.0 µg/mL esiRNA) of the control level at 48 h post-infection.

In a previous study,42 we made several vector-derived
short hairpin RNAs (shRNAs) that targeted HAV IRES and ex-
amined their effects on HAV replicon replication. Although
several shRNAs that targeted the loop regions of stem-loop
structures of the HAV IRES were made, the shRNAs that tar-
geted the HAV IRES domains IIIc and V were found to effi-
ciently suppress genome translation and replication. This
study suggested that the HAV IRES domains might serve as
attractive targets for suppression of HAV replication and HAV
infection. Thus, siRNA against HAV nonstructural protein
coding region and HAV IRES is an attractive DAA, but there
are difficulties in the delivery methods of siRNAs.

HTAs against HAV

Type I interferon

The eradication of HAV from human hepatocytes is associated
with interferon systems.43,44 It has been reported that inter-
feron-alpha exhibits antiviral activity against HAV replication
in the human hepatoma cell line PLC/PRF/5.45,46 Interferon-
alpha suppresses HAV replicon replication and HAV replica-
tion, although interferon-alpha seems to have no additive
effect on the suppression of HAV IRES-mediated translation
by amantadine.47 Interferon was found to be clinically effec-
tive for the suppression of HAV infection in some cases,48,49

but it is contraindicated for severe HAV infections, including
fulminant hepatitis, due to its adverse effects or its impair-
ment of the interferon systems.50,51

Other types of interferons

Interferon-gamma is produced upon HAV stimulation by HAV-
specific human leukocyte antigen (HLA)-dependent T8+
(cytotoxic) T-lymphocytes and plays a role in the eradication
of HAV infection.52 Recombinant interferon-gamma exhibits
antiviral effects against persistent HAV infection in human
fibroblasts.52

It was recently reported that interferons-lambda [i.e.,
interferon-lambda 1 (IL-29), interferon-lambda 2 (IL-28A),
and interferon-lambda 3 (IL-28B)] can inhibit HCV IRES-
mediated translation and that IL-29 and IL-28A but not
IL-28B can inhibit HAV IRES-mediated translation.53 In the
same study,53 100 ng/mL of IL-29 led to a 23% inhibition of
HAV subgenomic replication, and 250 ng/mL and 500 ng/mL
of IL-29 tended to inhibit HAV propagation without cell

Fig. 2. Structure of the hepatitis A virus (HAV) and targets of antiviral agents. UTR, untranslated region.
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damage. Because interferons-lambda use a receptor complex
that is different from that of interferon-alpha and the majority
of bone marrow-derived cells and nerve cells do not express
the receptors for interferons-lambda, interferon-lambda
resulted in fewer adverse events, such as the hematological
cytotoxicities or depression, compared with interferon-
alpha.54 Therefore, interferons-lambda may be useful for
severe conditions resulting from HAV infection. Further
studies are needed.

Ribavirin

Ribavirin (1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide)
is a broad-spectrum synthetic guanosine analog that acts
against deoxyribonucleic acid (DNA) and RNA viruses.55–57

At 100 µM, ribavirin moderately inhibited HAV propagation.58

The effects of ribavirin on HAV replication may be non-
specific,58–60 and ribavirin has no effect on HAV IRES-
mediated translation.61

Amantadine

Amantadine is a tricyclic symmetric amine and is also a broad-
spectrum antiviral that acts against influenza A viruses.61

Several groups have reported the effects of amantadine on
the growth of HAV in cell culture models.58,59,62 Amantadine
inhibited viral antigen synthesis when added to cells after the
attachment step,62 suggesting that amantadine acts during or
after the HAV entry pathway.62 Amantadine also inhibited HAV
IRES-mediated translation and HAV replication.61 Amanta-
dine can inhibit clinical isolate-derived HAV IRES-mediated
translation,63 although the effects of amantadine may be
strain-dependent.64 The influence of HAV genotypes and
sequence variations on the effects of amantadine should be
explored.10,11,17 The combinations of amantadine with
interferon-alpha or IL-29 resulted in stronger inhibitory
effects on HAV replication compared with amantadine
alone.47,53 Broad-target HTAs, such as interferon, ribavirin
and amantadine, may suppress HAV replication in certain
HAV patients.

Agents against key host enzymes and cellular factors

The key host enzymes and cellular factors that are required for
the viral lifecycle are targets of antiviral therapies.65 Several
cellular proteins, such as autoantigen La,66 glyceraldehyde-3-
phosphate dehydrogenase (GAPDH),67,68 polypyrimidine tract-
binding protein (PTB/hnRNPI),68–70 poly(C) binding protein 2
(PCBP2/hnRNP-E2),71 polyadenylate-binding protein-1
(PABP),72 eukaryotic translation initiation factor 4E (eIF4E)73

and eukaryotic translation initiation factor 4G (eIF4G),72,74,75

interact with HAV IRES RNA. These proteins might be associ-
ated with HAV replication. SiRNAs against La strongly inhibited
HAV IRES activities and HAV subgenomic replication.65 The
janus kinase (JAK) inhibitors SD-1029 and AG490 reduced La
protein expression and inhibited HAV IRES activities and HAV
replication in African green monkey kidney GL37 cell lines.65

We also found that the JAK2 inhibitor AZD1480 inhibited the
expression of phosphorylated-(Tyr-705)-signal transducer and
activator of transcription 3 (STAT3) and La and inhibited
HAV IRES-mediated translation and HAV replication in human
hepatoma cell lines.15 Thus, La plays a role in HAV replication
and might be an important target of HAV therapy.15,65

Ammonium chloride, methylamine, and dansylcadaverine
also inhibit HAV protein synthesis after the attachment step.62

The effects of phospholipase A2, phospholipase C, trypsin,
and beta-galactosidase on HAV infection have also been ob-
served, and suggest that these drugs act on HAV attachment
on the cellular surface.76 Monensin acts as an ionophore on
intracellular vesicle compartments and may inhibit HAV infec-
tion at the uncoating step.77 Isoflavans and isoflavenes have
inhibitory effects on the penetration and/or uncoating step of
HAV infection.78 Cell membrane lipid components might also
be attractive targets due to their interactions of HAV.79 It has
previously been reported that glycyrrhizin,59 pyrazofurin,59

arabinosylcytosine,58 and carrageenan80 exhibit antiviral
activities against HAV.

HAV and HCV replication were similarly sensitive to inter-
ferons, but clear differences existed for dependency on
phosphatidylinositol 4-kinase IIIa and b (PI4KIII), miR122,
and immunophilins.14 HAV replication was inhibited by the
“oral formulation” silibinin, a flavonolignan isolated from the
milk thistle, Sylibum marianum.14 Thus, there might be many
reagents that interact with HAV infection. Further studies are
needed.

Conclusions

There are six HAV genotypes (I-VI): HAV genotypes I-III could
infect humans, although only one serotype exists in HAV.
Further molecular epidemiological investigations and evolu-
tionary studies may provide a valuable opportunity to study
diversified drug responses to different HAV genotypes.81 In
this review, we selected the references about antiviral agents
against HAV from PubMed online. DAAs and HTAs might be
needed to control HAV infection. Although effective vaccines
for HAV have been developed, antiviral agents against HAV
should be explored until global eradication of HAV.
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