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Abstract

Hepatitis C virus (HCV) infection and type 2 diabetes mellitus
(T2DM) present a significant health burden, with increasing
complications and mortality rates worldwide. Pycnogenol®

(PYC), a natural product, possesses antidiabetic and antiviral
properties that may improve HCV-associated T2DM. In this
review, we present previously published data on the effective-
ness of PYC against HCV replication and T2DM. We believe
that supplementing conventional treatment with PYC may
improve the current HCV therapy, attenuate HCV-associated
T2DM, and reduce the risk of complications such as cirrhosis
or hepatocellular carcinoma and cardiovascular disease.
© 2016 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Inc. All rights
reserved.

Introduction

Hepatitis C virus (HCV) affects about 3% of the world’s
population. A recent survey found that the number of people
worldwide with HCV antibodies (anti-HCV) has increased from
122 million in 1990 to 184 million in 2005. Globally, 130–170
million people are chronically infected with HCV, leading to
54,000 deaths per year.1 Chronic HCV infection can lead to
cirrhosis and/or hepatocellular carcinoma (HCC).2 In fact,

one of the major risk factors for the development of HCC in
industrialized countries is HCV infection.

In the recent past, HCV therapy consisted of ribavirin
(RBV) combined with either peg-interferon-alpha-2a (PEG-
IFN-a-2a) or peg-interferon-alpha-2b (PEG-IFN-a-2b).
Unfortunately, these treatments lead to a sustained virologic
response (SVR) in less than 50% of individuals infected with
HCV genotype 1 and less than 85% for those infected with
genotypes 2, 3, 4, 5 and 6.3,4 Moreover, severe side effects,
such as flu-like symptoms, hemolytic anemia, autoimmune
diseases and neuropsychiatric symptoms, are the frequent
cause of treatment discontinuation.5 In 2011, the nonstruc-
tural protein 3/4A (NS3/4A) protease inhibitors, telaprevir
and boceprevir, were introduced. When used in combination
with PEG-IFN-a and RBV, these agents increased the cure rate
to approximately 70% for HCV genotype 1;6–8 however, the
triple-therapy regimens were reported to cause emergence
of drug-resistant HCV variants and side effects.6–8

Recently, direct acting antiviral (DAA) regimens have
improved HCV therapy by eliciting SVR in more than 90%
of infected populations across all HCV genotypes.9,10 In addi-
tion, a vaccine with substantial efficacy has been introduced
and may reduce the incidence of new infections.11 While the
treatment paradigm for HCV infection has undergone sub-
stantial change since the discovery of HCV 27 years ago,
the primary challenges remain the identification of all HCV
carriers and worldwide accessibility to expensive drugs.

Type 2 diabetes mellitus

Globally, type 2 diabetes mellitus (T2DM) is one of the most
serious common metabolic disorders. The prevalence of
diabetes worldwide is estimated to rise from 2.8% in 2000
to 4.4% in 2030,12 with the total number of people with
diabetes estimated to increase from 382 million in 2013 to
592 million in 2035.13 Most patients with T2DM will require
multiple glucose-lowering medications to achieve glycemic
goals.14 However, the choice of subsequent drug therapy is
not straightforward, given the diverse range of pharmacolog-
ical agents (at least 12 drug classes) now available.15

A recent meta-analysis of randomized-controlled trials sug-
gested that combining metformin with other oral agents
can improve glycemic outcomes, as compared to that of
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metformin monotherapy.16 However, the current manage-
ment of patients with T2DM remains suboptimal.

Association between HCV and T2DM

HCV affects insulin resistance (IR) through several mecha-
nisms. First, it impairs the insulin-signaling pathway. Research-
ers have found that insulin receptor substrate 1 (IRS-1) levels
are significantly lower in Huh-7 cells transfected with HCV
core proteins for genotypes 1b and 3a.17 The HCV core protein
for genotype 3a promotes IRS-1 degradation through down-
regulation of peroxisome proliferator-activated receptor
g (PPARg) and up-regulation of the suppressor of the cytokine
signal 7 (SOCS-7) protein,17 while the core protein for geno-
type 1b activates the mammalian target of rapamycin
(mTOR).17 HCV core proteins also inhibit activation of insulin
receptor substrates 1 and 2 (IRS-1/2), which reduces protein
kinase B (PKB) activity, lowers glucose transporter type 4
(GLUT4) expression and increases gluconeogenic enzyme

levels (Fig. 1). In addition, inhibition of hepatic IRS-1 tyrosine
phosphorylation and phosphatidylinositol 3-kinase activation
may disrupt insulin signaling and contribute to IR, which leads
to the development of T2DM.18,19

HCV can also induce inflammation, which plays an impor-
tant role in IR by increasing levels of interleukin 1 (IL-1),
tumor necrosis factor-a (TNF-a) and interleukin 6 (IL-6) to
stimulate the expression of IKKb, a protein kinase that induces
IR by inhibitory phosphorylation of IRS-1.20 In addition, reac-
tive oxygen species (ROS) can activate nuclear factor kappa-
light chain-enhancer of activated B cells (NF-kB). Constitutive
activation of NF-kB leads to increased expression of a variety
of cytokines, including TNF-a and IL-6.21

Although several reports have shown that HCV increases
the risk of T2DM,22–24 the converse is also true. Individuals
with T2DM are more prone to HCV infections.25 For instance,
a recent meta-analysis comparing patients with and with out
T2DM clearly suggested that T2DM is associated with increased
susceptibility to HCV infection (odds ratio = 3.50, 95%
confidence interval: 2.54–4.82).25

Pycnogenol® (PYC) as adjunctive therapy for HCV–
associated T2DM

Several studies have shown that HCV and T2DM induce
oxidative stress.26–28 Hyperglycemia increases oxidative
stress through the overproduction of ROS,29,30 and HCV
induces oxidative stress via the HCV core, NS3, and NS5A
proteins.31 Several studies using various HCV cell culture
systems have identified mitochondria as the source of ROS;
thus, mitochondrial dysfunction is likely to be important in
HCV-associated pathogenesis (Fig. 2).32–34 More specifically,
researchers believe that HCV gene expression elevates
ROS levels through calcium signaling.35,36 Calcium is taken
up by the mitochondria, resulting in elevation of ROS and
degradation of the inhibitory subunit (IkBa) of NF-kB by
calcium/calpain.35,37 ROS activates cellular tyrosine and
serine/threonine kinases, which then activate NF-kB and
signal transducer and activator of transcription 3 (STAT3).35

Constitutive activation of NF-kB and STAT3 by HCV has been
reported in acute and chronic liver disease.35–37 In support of
those studies, researchers have found that oxidative stress
decreases to normal levels after viral eradication with PEG-
IFN therapy.38,39

PYC (Horphag Research, Ltd., Geneva, Switzerland), an
extract from the outer bark of the French maritime pine Pinus
pinaster ssp. Atlantica (formerly known as Pinus maritima
Aiton spp. Atlantica des Villar), is highly concentrated with
flavonoids, with the primary constituents being procyanidins,
taxifolin, ferulic acid, catechin, and caffeic acid.40 PYC pro-
motes a protective antioxidant state and anti-inflammatory
action by up-regulating the scavenging systems,41–45 and is
generally recognized as safe for use as a supplement.46

PYC may inhibit HCV replication by interacting with viral
proteins involved in oxidative stress, or through host-target-
ing by inducing endogenous lipid peroxidation that restricts
HCV replication (Fig. 3).47 We previously demonstrated PYC’s
direct antiviral effect on HCV replication in vitro, by using
various HCV replicon systems, and in vivo, by using chimeric
mice infected with genotype 1a.45 We showed that combining
PYC with RBV, interferon (IFN) and telaprevir can increase
HCV antiviral activity, either synergistically or additively.45

In addition, we found that PYC suppresses HCV replication
in telaprevir-resistant replicon cells and may improve the

Fig. 1. Hepatitis C virus affects the insulin signaling cascade. Abbrevia-
tions: IRS-1, insulin receptor substrate 1; IRS-2, insulin receptor substrate 2;
PI3K, phosphoinositide 3-kinase; SOCS, suppressor of cytokine signaling; GLUT4,
glucose transporter type 4.
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response to protease inhibitors.45 Deep sequencing of telap-
revir-resistant replicon cells revealed the presence of V36A,
T45V and A156T in the NS3 region that confers resistance to
telaprevir treatment. The A156T mutation has previously
been shown to confer resistance to simeprevir (TMC435;
approved by the FDA in November 2013) in vitro.48 We incu-
bated the wild-type HCV and simeprevir-resistant replicon
cells with either PYC or simeprevir. Results showed that PYC
reduces HCV replication in both wild-type and resistant repli-
cons.45 In addition, we investigated the antioxidant capacity
of PYC in HCV replicon cell lines and found strong scavenging
activity against ROS.45

PYC may also improve blood glucose levels. In an animal
model, treatment of streptozotocin-induced diabetic rats
with PYC significantly reduced blood glucose concentrations
and elevated antioxidant defense mechanisms and GLUT4
expression.49,50 In addition, a previous study demonstrated
that PYC treatment down-regulates high glucose–associated
NF-kB nuclear translocation in renal tubular cells.41 The effects
were demonstrated clinically in a randomized, double-blind,
placebo-controlled multicenter study that showed that the

glucose-lowering effect was significantly greater for patients
whose therapy was supplemented with PYC, as compared to
that in patients supplemented with placebo (p < 0.01).51 Gly-
cosylated hemoglobin was assessed monthly and the values
decreased continuously over the treatment period for both
groups, with a more pronounced effect in the PYC group.51

Several mechanisms have been suggested for PYC’s effect
on blood glucose. Evidence from an in vitro study using 3T3-L1
adipocytes demonstrated that PYC enhances glucose uptake
in a dose-dependent manner similar to insulin. In particular,
PYC was shown to enhance GLUT4-mediated glucose uptake
via phosphoinositide 3-kinase-dependent tyrosine kinase
pathways involving PKB.40 PYC also inhibits NF-kB and acti-
vator protein-1 (AP-1), and prevents the degradation of IkBa
(Fig. 3).52,53 More specifically, Choi and colleagues found that
PYC inhibits the expression and secretion of TNF-a and IL-6,
thereby reducing calcium uptake and suppressing NF-kB acti-
vation (Fig. 3).54,50 Thus, PYC may improve T2DM therapy
by enhancing GLUT4-mediated glucose uptake, inhibiting
inflammatory genes such as IL6 and TNF-a, and also by inhib-
iting the SOCS pathways (Fig. 3).50

Fig. 2. Hepatitis C virus replication induces oxidative stress. Abbreviations: ROS, reactive oxygen species; NS5A, nonstructural protein 5A; MAPK, mitogen-activated
protein kinase; JNK, c-Jun N-terminal kinase; PI3K, phosphoinositide 3-kinase; NF-kB, nuclear factor-kappa B; ISGs, interferon-stimulated genes.

230 Journal of Clinical and Translational Hepatology 2016 vol. 4 | 228–233

Ezzikouri S. et al: Pycnogenol improves HCV-associated T2DM



Fig. 3. Schematic model of possible actions of Pycnogenol® against hepatitis C virus-associated type 2 diabetes.

Conclusions

PYC’s antidiabetic and antiviral properties make this natural
remedy a potentially excellent adjunctive treatment for HCV-
associated T2DM, possibly reducing medication burden and
the risk of HCV complications such as cirrhosis or HCC. In
addition, PYC’s antioxidant and anti-inflammatory properties
may attenuate HCV’s effects on the insulin signaling pathway,
reducingHCV-associated IR to improveT2DM therapyand help
patients achieve andmaintain normal blood glucose levels. For
these reasons, it would be of interest to evaluate the useful-
ness of PYC in vivo and to conduct a clinical trial using PYC as
adjunctive treatment for patients with HCV-associated T2DM.
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