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Abstract

Whereas statistical association of hepatitis C virus (HCV)
infection with cardiomyopathy is long known, establishment
of a causal relationship has not been achieved so far. Patients
with advanced heart failure (HF) are mostly unable to tolerate
interferon (IFN)-based treatment, resulting in limited experi-
ence regarding the possible pathogenic role of HCV in this
patient group. HCV infection often triggers disease in a broad
spectrum of extrahepatic organs, with innate immune and
autoimmune pathogenic processes involved. The fact that
worldwide more than 70 million patients are chronically
infected with HCV illustrates the possible clinical impact
arising if cardiomyopathies were induced or aggravated by
HCV, resulting in progressive HF or severe arrhythmias.
A novel path has been opened to finally resolve the long-
standing question of cause-effect relationship between HCV
infection and cardiac dysfunction, by the recent development
of IFN-free, highly efficient, and well tolerable anti-HCV
regimens. The new direct-acting antiviral (DAA) agents are
highly virus-specific and lack unspecific side-effects upon
cardiac function which have always confounded the interpre-
tation of IFN treatment data. The actual frequency of un-
explained HF in chronic HCV infection will be determined from
a planned large-scale study. Whereas such patients probably
constitute a rather small fraction of all those harboring HCV,
they have major clinical relevance. It is not yet known which
fraction of these patients will significantly benefit from HCV

eradication, but this issue will be addressed now in a
prospective study.
Citation of this article: PollerW, Haghikia A, Kasner M, Kaya Z,
Bavendiek U, Wedemeier H, et al. Cardiovascular involvement in
chronic hepatitis C virus infections – insight from novel antiviral
therapies. J Clin Transl Hepatol 2018;6(2):161–167. doi: 10.
14218/JCTH.2017.00057.

Introduction

Several studies have detected an association of hepatitis C
virus (HCV) infection with cardiomyopathy, but no causal
relationship or mechanistic link could be established so far.1–7

Importantly, patients with advanced or pretransplant heart
failure (HF) as defined by European Society of Cardiology
(ESC) guidelines8 are mostly unable to tolerate interferon
(IFN)-based treatment regimes, resulting in very limited
experience with this patient group regarding the possible
pathogenic role of HCV infections. HCV infection often triggers
disease in a broad spectrum of extrahepatic organs,9–13 with
innate immune and autoimmune pathogenic processes being
involved,14–16 and involvement of the myocardium in HCV-
triggered autoimmunity would therefore not come as a sur-
prise. There is no need to assume that HCV directly infects the
myocardium, or that HCV impairs the function of a healthy
heart and thus constitutes an independent cause of cardiomy-
opathy and HF. For HCV to have relevance for cardiovascular
medicine it would already be sufficient that it indirectly dis-
turbs cardiac function via an immune mechanism, and does
so particularly in already injured hearts. In all cases, HCV
elimination could result in functional improvement.

The fact that worldwide more than 70 million patients are
chronically infected with HCV illustrates the possible clinical
impact arising if cardiomyopathies were induced or aggra-
vated by HCV.14,17 If progressive HF or severe arrhythmias
were induced in even a small fraction of all HCV-positive
patients, this would still constitute a grave clinical problem.
For this reason, it is most welcome that the long-standing
hypothesis of cause-effect relationship between HCV infection
and cardiac dysfunction may be conclusively tested now,
enabled by the recent introduction of highly efficient and
virus-specific direct-acting antiviral (DAA)-based anti-HCV
regimens.18–23 Cardiac functional effects of DAA-based HCV
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elimination can be directly related to the infection, since
the new DAA drugs are devoid of the often grave unspecific
side-effects of IFN upon cardiac function. In general, the new
regimens may broaden the spectrum of patients eligible for
therapy. If these regimens confer significant benefit in cardi-
ovascular or other conditions associated with HCV, extrahe-
patic HCV manifestations may become an indication for
treatment even in the absence of significant liver disease.

Cardiovascular implications of chronic HCV infections

Whereas HCV is long known as the leading cause of hepato-
cellular carcinoma and cirrhosis,10 the cardiovascular implica-
tions of HCV infections are incompletely explored and possible
mechanistic links are essentially lacking. Multiple former
studies regarding effects of HCV infection upon cardiovascular
disease (CVD) risk produced ambiguous results. A recent
meta-analysis of these studies10 concluded that HCV-infected
patients have increased CVD-relatedmortality (OR: 1.65, 95%
CI: 1.07–2.56, p=0.02), carotid plaques (OR: 2.27, 95% CI:
1.76–2.94 p<0.001), and cerebrocardiovascular events (OR:
1.30, 95% CI: 1.10–1.55, p=0.002, total 7.611 cerebrocar-
diovascular events in the HCV group).

Association studies of HCV with cardiomyopathy1–3,24 are,
by nature, unable to resolve the clinical key question if there is
true cause-effect relationship between HCV and cardiac dys-
function. Importantly, not even detection of HCV genomes or
their replication4 in endomyocardial biopsies (EMBs) can prove
causality since HCV might still be an innocent bystander.
Against the background of these methodological problems,
detailed follow-up of cardiac function and morphology before
and after DAA-based HCV eradication offers a very elegant and
direct alternative to answer the question.

Using a DAA protocol, we recently found it well tolerated
even in a patient with apparently end-stage HF.24 A patient
who was previously unable to tolerate IFN-based anti-HCV
therapy as a consequence of grave cardiovascular and psy-
chiatric side-effects had to be listed for heart transplantation
(HTX) due inexorable cardiac disease progression. Since
HCV-positive status generally excludes successful listing and
significantly impairs transplant survival,25,26 we subjected
her to DAA treatment prior to anticipated HTX. Unexpectedly,
she displayed rapid and stable improvement of her NYHA
functional status from III-IV before to class II after HCV clear-
ance, and HTX was no longer considered.24 The conclusion
that HCV was causally involved in her myocardial dysfunction
is inevitable for two reasons. First, the DAAs used (ombitasvir,
paritaprevir and dasubavir inhibiting viral NS5A protein, RNA-
dependent RNA polymerase (RdRp) and NS3/4A protease,
respectively, plus the CYP3A inhibitor ritonavir) will not elim-
inate known cardiotropic viruses (coxsackievirus B3 (CVB3),
adenovirus (AdV), parvovirus B19 (B19V), human herpes
virus 6 (HHV6), Epstein-Barr virus (EBV)) due to the different
genome sequences and biological life cycles compared to
HCV. Second, for none of the DAAs used a direct effect upon
innate or cell-mediated immunity, or upon inflammation in
general is known.

Whereas this is an encouraging observation, it is currently
not known which fraction of all HCV-infected patients with
advanced cardiac dysfunction will experience comparably
strong therapeutic benefit from HCV clearance. A large-scale
study is thus required to determine the true frequency of the
combination of advanced HF with chronic HCV infection. Most
likely, patients with severe cardiac dysfunction constitute a

rather small fraction of all HCV-positive individuals only, but a
subgroup of eminent clinical relevance. A study is therefore
planned to recruit a sufficiently large number of HCV-infected
patients with cardiac disease who are in need and eligible for
state-of-the-art IFN-free HCV elimination therapy. Systematic
cardiological follow-up will reveal to what extent and in which
fraction of these patients HCV eradication does improve cardiac
function. These patients need to be closely monitored for
possible side effects (e.g., electrolyte disturbances)24,27 since
the DAAs are in general well tolerated by nonHF patients,18–22

but experience with HF cohorts, especially with patients in
advanced stages of HF, is lacking. There have been reports of
serious bradycardia among patients treated with sofosbuvir
and amiodarone, but systematic review and meta-analysis of
pooled data from randomized controlled trials did not show an
increased risk of cardiac outcomes.28

HCV virology and immunology and possible cardiac
pathomechanisms

After the discovery of HCV and generation of infectious
molecular cDNA clones in 1997,29,30 HCV was classified as pro-
totype Hepacivirus into the Flaviviridae family. HCV constitutes
a diversified group of viruses classified into seven genotypes
and multiple subtypes, circulating in those infected as contin-
uously evolving quasispecies.17,31,32 The same phenomenon,
which is based on lack of proof-reading activity of the virus-
encoded RdRp, is also observed for CVB3,33 the prototype
virus causing myocarditis and often resulting in dilated cardi-
omyopathy.34–36 For both HCV and CVB3, continuous diversi-
fication of virus genome sequences has been documented.

HCV resembles CVB3 in another important molecular
aspect. Both have positive-sense single-stranded RNA genomes
which in the host cells serve directly as messenger RNA
(Fig. 1B), and in association with modified cell membranes
as template for replication through negative-strand full-length
intermediates.37,38 Both HCV and CVB3 employ internal ribo-
some entry site (IRES)-mediated translation and polyprotein
processing of the long primary virus-encoded mRNA, and both
use a particular type of polymerases designated as RdRp,
which are important drug targets (Fig. 1B).

The molecular mechanisms of HCV and CVB3 replication
therefore display important similarities, whereas tissue
tropism and details of replication differ greatly. Cell surface
receptors known to be involved in HCV and CVB3 attachment
and internalization are depicted in Fig. 1A. With regard to
tissue tropism, it should be noted that this need not be com-
prehensively determined by the normal receptor complement
of target cells, i.e. CVB3 always being targeted to cardiomyo-
cytes or HCV to hepatocytes only. Instead, breakdown of
endothelial barriers or alterations of cell surface receptor
expression induced by any disease39–43 may lead to retarget-
ing of a virus to organs and targets cells normally inaccessible
to this specific virus. Thus, one report described the presence
of HCV genomes in the myocardium4 by direct analysis of
EMBs.

Interferons as primarily host-targeting and rather unspe-
cific therapeutic agents were used for virus suppression or
elimination in HCV as well as CVB3 infections. The efficacy of
IFN-g was found to be high regarding virus elimination in CVB3
cardiomyopathy patients, resulting in less urgent clinical need
for the development of CVB3-specific DAAs.34,44,45 This is in
sharp contrast to HCV elimination which could not be reached
by use of IFN-based regimens, resulting in a high clinical need
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for DAAs against HCV. Another, clinically and economically
important aspect of the far more intense research into anti-
HCV DAAs as compared to anti-CVB3 drugs46–51 is the fact
that CVB3 cardiomyopathy is a rather rare disease,52–60

whereas HCV infections are among the most frequent and
important viral diseases worldwide.23 Millions of patients are
newly infected with HCV each year, chronicity rate is high, and
over 70 million individuals are known to be infected.

According to current knowledge HCV replicates primarily,
if not exclusively, in the patients’ hepatocytes,61 and its

replication is strongly dependent on the liver-specific micro-
RNA-122 which led to the development of a fundamentally
novel anti-HCV therapeutic strategy based on an anti-
miR-122 antagomir (miravirsen).62 A number of other host
molecules critical for HCV entry and replication were identi-
fied,21 revealing important targets for the development of
host targeting agents (HTAs). Although the use of miravirsen
in patients with chronic HCV genotype 1 infection resulted in
prolonged dose-dependent reductions in HCV RNA levels
without evidence of viral resistance,63,64 this path is no

Fig. 1. Similarities between the life cycles of HCV and the prototypical cardiotropic virus CVB3. (A) Cell surface virus receptors determining the tissue tropism of
HCVand CVB3. Themolecular mechanisms of HCVand CVB3 replication display important similarities, whereas tissue tropism and details of replication differ. Those cell surface
receptors known to be involved in HCV and CVB3 attachment and subsequent receptor-mediated endocytosis are depicted for HCV (left) and CVB3 (right), respectively. It
should be noted that these receptors and coreceptors do not irreversibly determine the targeting path of HCV or CVB3 in the host, with CVB3 always reaching cardiomyocytes,
and HCV hepatocytes only. Endothelial barrier breakdown or alterations of cell surface receptor expression induced by any disease39–43 may lead to retargeting of a virus cell
which is normally inaccessible to it.4,39–43 (B) The complex intracellular viral genome transcription ultimately leading to HCV replication, and the key therapeutic targets
addressed by DAAs. HCV constitutes a divergent group of viruses circulating as continuously evolving quasispecies.17,31,32 The same phenomenon, which is based on lack of
proof-reading activity of the virus-encoded RdRp, is also observed for CVB3,33 the prototype virus causing myocarditis and often resulting in dilated cardiomyopathy.34–36 For
both HCV and CVB3, continuous diversification of virus genome sequences has been documented. The panel depicts that both HCV and CVB3 have positive-sense single-
stranded RNA genomes which in the host cells serve directly asmessenger RNA. Both employ IRES-mediated translation and polyprotein processing of the 9.6 kb primary virus-
encoded mRNA, and both viruses use RdRp for this purpose. The primary 3000 amino acid polyprotein encompasses structural (C – nucleocapsid, E – envelope glycoproteins),
as well as non-structural (NS) proteins required for polyprotein processing (NS3 protease) and viral genome transcription and replication (NS5B, RdRp). The RdRp of HCV
emerged as an important drug target, which alongside drugs inhibiting the NS3 protease and the NS5A protein form the basis of current IFN-free HCV eradication protocols.
Abbreviations: AdV, adenovirus; avb3,5, integrins; CAR, coxsackievirus-adenovirus-receptor; CLDN1, claudin1; CVB3, coxsackievirus-adenovirus receptor; DAF, decay ac-
celerating factor; EGFR, EGF receptor; EphA2, ephedrine A2; HCV, hepatitis C virus; IRES, internal ribosome entry site; LDL-R, LDL receptor; NS, non-structural proteins;
OCLN, occludin; RdRp, RNA-dependent RNA polymerase; SR-B1, scavenger receptor B1.
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longer followed and has been replaced by DAAs with their
significantly higher efficacy and eradication potential. Like-
wise, none of the several anti-receptor strategies to block
attachment and/or internalization of HCV17 or CVB3 has so
far proceeded to the stage of clinical evaluation.31,34,65–70

Whereas these studies have addressed host-related molec-
ular mechanisms, other investigations of outstanding impor-
tance have addressed the structures and functions of essential
HCV-encoded proteins, in particular three of those classified as
nonstructural (NS).17 The identification and characterization of

Fig. 2. Study to determine the impact of HCV eradication upon the course of myocardial diseases. The actual frequency of the combination of cardiomyopathy with
chronic HCV infection is currently unknown. This study shall recruit a large number of HCV patients withmyocardial disease who are in need and eligible for state-of-the-art HCV
eradication.15–18 Cardiological follow-up will reveal to what extent, and in which fraction of these patients, HCV eradication does improve cardiac function. For HCV to reach
cardiovascular therapeutic relevance it would be sufficient that it indirectly disturbs cardiac function via immunemechanism, even if it does so only or particularly in already pre-
injured hearts. Therefore, the study shall not only include patients with inexplicable left or right heart dysfunction or morphology, but also patients with nonvalvular and
nonischemic cardiomyopathies, and pulmonary hypertension and/or right heart dysfunction of any cause. In these cases, HCV infection may adversely affect the “natural
course” of the cardiac disease. The study is primarily based on noninvasive assessment (serial echocardiographies, HF biomarkers) to ascertain the frequency of combination of
cardiomyopathy with HCV infection. In a subgroup of patients with advanced cardiac dysfunction5 and/or or extensive morphological anomalies, right/left ventricular EMBs68–70

are to be performed in accordance with ESC guidelines.5 Patients are classified as IMPs if LVEF increases by 10 absolute percent units or if NYHA improves by one class. Patients
are classified as NIMPs if they show at the follow-up visit any of the parameters such as an LVEF <35 %, failure to improve LVEF by 10 absolute units, remaining at a NYHA
functional class of III/IV or obtaining heart transplantation/ventricular assist device or if patients die. Full recovery is defined as reaching an LVEF of >55 % and NYHA class I.
Abbreviations: ESC, European Society of Cardiology; EMBs, endomyocardial biopsies; HCV, hepatitis C virus; HF, heart failure; IMPs, improvers; LVEF, left ventricular ejection
fraction; NIMPs, nonimprovers.
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HCV-encoded proteins and their functional units enabled the
development of highly effective DAAs against the NS3 pro-
tease, NS5A and the NS5B polymerase of HCV. As already dis-
cussed above, IFN-free regimens based on these DAAs are not
only far more efficient than IFN regarding HCV elimination, but
they also have far less side effects. In combination, these DAA
agents enabled IFN-free therapy with cure rates over 90%
among patients with chronic HCV infection. Nevertheless,
viral resistance represents a problem not yet fully solved.

Outlook from the cardiovascular perspective

Frequency of cardiac dysfunction in chronic HCV
infection

Onemay safely assume that screening of retrospective series of
HCV-positive patients for evidence of unexplained myocardial
disease will only detect those with grave myocardial disease.
Otherwise either the myocardial disturbance (e.g., isolated
diastolic dysfunction) will go undetected, or in cardiological
patients there are no data regarding possible HCV infection
since there was no clinical hint for liver disease, and hence no
apparent need for virus-specific diagnostics. The actual fre-
quency of the combination of cardiomyopathy with chronic
HCV infection therefore shall be determined in a prospective
study (Fig. 2).

Cardiovascular therapeutic relevance of HCV
elimination

In order to proceed beyond the question of frequency to
possible cardiovascular therapeutic impact, this study has to
recruit a sufficiently large number of HCV patients with
cardiac dysfunction who are in need and eligible for state-
of-the-art HCV eradication.17–22 Careful cardiological follow-
up will then reveal to what extent, and in which fraction of
these patients, HCV eradication does in fact improve cardiac
function. For HCV to reach cardiovascular therapeutic rele-
vance it would suffice that it indirectly disturbs myocardial
function via immune mechanism, even if it does so only or
particularly in already pre-injured hearts. There is no need
to assume that HCV directly infects the myocardium, or
impairs the function of a healthy heart, thus constituting an
independent cause of cardiomyopathy and HF. Therefore, the
study shall not only include patients with inexplicable left or
right heart dysfunction or morphology, but also patients with
nonvalvular and nonischemic cardiomyopathies, and with
pulmonary hypertension and/or right heart dysfunction of
any cause. In these cases, the HCV infection might adversely
affect the “natural course” of the cardiac disease.

Persistent immune system anomalies despite
successful HCV elimination

The study is primarily based on noninvasive functional
assessment of patients (serial echocardiography, HF bio-
markers) which allows to ascertain the frequency of the
combination of cardiomyopathy with HCV infection, and to
address the question of cardiovascular therapeutic impact. In
a subgroup of patients with advanced cardiac dysfunc-
tion17–22 and/or or extensive morphological anomalies (e.g.,
massive left/right ventricular hypertrophy), right/left ventric-
ular EMBs71–73 are to be performed in accordance with ESC
guidelines EMBs,5 providing molecular virological data,4,37,38

immunohistological data and immune-related gene expres-
sion profiles to identify and characterize inflammation, and
histology to detect storage diseases. In addition, cardiac
autoantibody arrays74–76 will be conducted immediately
before and 6 months after HCV elimination.

Several sets of data suggest that myocardial dysfunction
and pathogenesis in chronically-infected HCV patients are
immune-mediated. First, several studies have documented
that autoantibodies to myocardial proteins including troponin
I74–76 and others74–76 may aggravate cardiac dysfunction, and
have prognostic relevance.77–79 Virus infections induce an
innate immune response not only when active viral replication
takes place, but also in latent infections with evenminimal viral
synthesis of immunogenic nucleic acids or proteins.5,80,81 In
addition to this primordial innate immune activation, there
may be virus-triggered autoantibody formation by molecular
mimicry or other mechanisms. Second, it has been shown that
DAA-induced HCV clearance does not completely restore the
altered cytokine and chemokine milieu.82–84 From the above
immunhistological and serological characterization of the
patients before and after virus elimination one may expect
further insights into HCV-associated myocardial pathogenesis.
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